Chapters 2.4, 4.1
 Tuesday, July 7

Sums

What is a closed form for $\sum_{k=1}^{n}(-1)^{k} k^{2}$? Find the first few values, then come up with a conjecture.

Find (at least) two ways to express the sum of the triangle below:

```
1
2 1
3 3 1
4
5
6
```

Put in summation notation: what is the x^{2} coefficient of $\left(a_{1} x+a_{0}\right)\left(b_{1} x+b_{0}\right)\left(c_{1} x+c_{0}\right)$? What is the x^{2} coefficient of $(x+1)^{3}$?

Here is a board, with some X's on it:

			X				
		X				X	
X	X						
							X
						X	
			X	X			
					X		
	X					X	

Each square is worth some number of points: for every X it shares a row with (including the square it is on), it gets a point. For every X it shares a column with (including the square it is on), it loses a point. What is the sum of the point values of all the squares on the board? (Hint: you have to sum over the right variable...)

Divisibility

True or false? If true, prove. If false, find a counterexample.

1. If $a \mid b$ and $b \mid c$ then $a \mid c$.
2. If $a \mid b$ and $a \mid c$ then $a \mid b$.
3. If $a \mid b$ and $b \mid a$ then $a=b$.
4. If $a \mid c$ and $b \mid c$ then either $a \mid b$ or $b \mid a$.
5. If $a \mid b$ and $a \mid c$ then $a \mid(m b+n c)$ for any $m, n \in \mathbb{Z}$.
6. $a \mid a$ for any a.
7. $a \mid 0$ for any a.
8. $1 \mid a$ for any a.
9. $0 \mid a$ for any a.
10. $0 \mid a$ if and only if $a=0$.
11. Suppose $a \mid b$. Then $a \mid(b+c)$ if and only if $a \mid c$.
12. If $2 \mid n$ and $4 \mid n$ then $8 \mid n$.
13. If $2 \mid n$ and $3 \mid n$ then $6 \mid n$.
14. How can you tell when a number is divisible by $\{2,3,4,5,6,7,8,9,11,17\}$?
