# Chapters 2.4, 4.1 <br> Tuesday, July 7 

## Sums

What is a closed form for $\sum_{k=1}^{n}(-1)^{k} k^{2}$ ? Find the first few values, then come up with a conjecture.

$$
S_{1}=-1, S_{2}=3, S_{3}=-6, S_{4}=10, S_{5}=15 \ldots
$$

A reasonable guess would be $S_{n}=(-1)^{n} \cdot n(n+1) / 2$. The formal proof will have to wait until we get to induction.
Find (at least) two ways to express the sum of the triangle below:

| 1 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 |  |  |  |  |
| 3 | 3 | 1 |  |  |  |
| 4 | 5 | 4 | 1 |  |  |
| 5 | 7 | 7 | 5 | 1 |  |
| 6 | 9 | 10 | 9 | 6 | 1 |

Method 1: Sum by columns, then by rows. If we index the columns from 1 to 6 , and we label the top number in each column by $r=0$, then the columns can be written in the following pattern in terms of r :

$$
\begin{aligned}
1,2,3,4,5,6 \ldots & =1+r \\
1,3,5,7,9 \ldots & =1+2 r \\
1,4,7,10 \ldots & =1+3 r
\end{aligned}
$$

$$
\ldots
$$

The pattern changes with each column $c$, but we can fit the numbers to the pattern $S(c, r)=1+c r$. This makes the double sum $\sum_{c=1}^{6} \sum_{r=0}^{6-c} 1+c r$.
Method 2: Sum by diagonals, then by columns: label the diagonals from $d=0$ to 5 . Then label the columns from $c=1$ to 6 . Then we can find the following patterns in terms of $d$ and $c$ :

$$
\begin{aligned}
1,1,1,1,1,1 & =1 \\
2,3,4,5,6 & =1+c \\
3,5,7,9 & =1+2 c \\
4,7,10 & =1+3 c
\end{aligned}
$$

This fits the more general pattern $S(d, c)=1+d c$. The double sum then becomes $\sum_{d=0}^{5} \sum_{c=1}^{6-d} 1+d c$.
Put in summation notation: what is the $x^{2}$ coefficient of $\left(a_{1} x+a_{0}\right)\left(b_{1} x+b_{0}\right)\left(c_{1} x+c_{0}\right)$ ? What is the $x^{2}$ coefficient of $(x+1)^{3}$ ?
The $x^{2}$ coefficient of the product is $\left(a_{1} b_{1} c_{0}+a_{1} b_{0} c_{1}+a_{0} b_{1} c_{1}\right)$. In summation notation this would be

$$
\sum_{\substack{0 \leq i, j, k \leq 1 \\ i \neq j+k=2}} a_{i} b_{j} c_{k}
$$

Here is a board, with some X's on it:

|  |  |  | X |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | X | X |  |  |  | X |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | X | X |
|  |  |  | X | X |  |  |  |
|  |  |  |  |  | X |  |  |
|  | X |  |  |  |  | X |  |

Each square is worth some number of points: for every X it shares a row with (including the square it is on), it gets a point. For every X it shares a column with (including the square it is on), it loses a point. What is the sum of the point values of all the squares on the board? (Hint: you have to sum over the right variable...)

This would be hard if we tried to sum first over the rows or the columns; instead count the contribution each letter "X" makes to the total score. Each X gives 8 points to the squares in its row and takes 8 points away from the squares in its column, so the net contribution is zero. Thus the sum of the scores of all the squares is 0 .

## Divisibility

True or false? If true, prove. If false, find a counterexample.

1. If $a \mid b$ and $b \mid c$ then $a \mid c$.

True: if $a \mid b$ and $b \mid c$ then there exist $k, m \in \mathbb{Z}$ such that $a k=b$ and $b m=c$. Then $a(k m)=(a k) m=$ $b m=c$, and so $a \mid c$.
2. If $a \mid b$ and $a \mid c$ then $a \mid b$.

Trivially true.
3. If $a \mid b$ and $b \mid a$ then $a=b$.

False: $a=3, b=-3$ is a counterexample. It would be true to instead say $a= \pm b$ or $|a|=|b|$.
4. If $a \mid c$ and $b \mid c$ then either $a \mid b$ or $b \mid a$.

False: $a=12, b=8, c=24$. Or $a=3, b=5, c=15$.
5. If $a \mid b$ and $a \mid c$ then $a \mid(m b+n c)$ for any $m, n \in \mathbb{Z}$.

True: Since $a|b, a| m b$ for any $m \in \mathbb{Z}$. Since $a|c, a| n c$ for any $n \in \mathbb{Z}$. Then since $a \mid m b$ and $a \mid n c$, it follows that $a \mid(m b+n c)$ for any $m, n \in \mathbb{Z}$.
Application: If we have 4 -cent and 6 -cent stamps, we cannot combine them to make 37 cents because 4 and 6 are both even, so any combination of stamps must also have an even price.
6. $a \mid a$ for any $a$.

True: $a \cdot 1=a$.
7. $a \mid 0$ for any $a$.

True: $a \cdot 0=0$.
8. $1 \mid a$ for any $a$.

True: $1 \cdot a=a$ for any $a$.
9. $0 \mid a$ for any $a$.

False: For any $k, 0 \cdot k=0$, so there does not exist any $k$ such that $0 \cdot k=1$ (or any other non-zero number, for that matter).
10. $0 \mid a$ if and only if $a=0$.

True: The previous problem showed that $0 \nmid a$ if $a \neq 0$, so we just have to show that $0 \mid 0$, which is true because $0 \cdot 1=0$.
11. Suppose $a \mid b$. Then $a \mid(b+c)$ if and only if $a \mid c$.

True: We know that if $a \mid b$ and $a \mid c$ then $a \mid(b+c)$ from the book. Conversely, if $a \mid b$ then $a \mid(-b)$, so if $a \mid(b+c)$ then $a \mid(b+c)+(-b)$, meaning $a \mid c$.
This case shows a way to get new rules from previous rules, but we could also do this directly: if $a \mid b$ then $a k=b$ for some $k$. If $a \mid(b+c)$ then $a j=b+c$ for some $j$. This means that $a(j-k)=a j-a k=$ $b+c-b=c$, and so $a \mid c$.
12. If $2 \mid n$ and $4 \mid n$ then $8 \mid n$.

False: $n= \pm 4$ are the only two counterexamples.
13. If $2 \mid n$ and $3 \mid n$ then $6 \mid n$.

True: If $2 \mid n$ then $n=2 k$ for some $k$. If $3 \mid n$ then $n=3 j$ for some $j$. Thererfore $2 k=3 j$ for some $j, k \in \mathbb{Z}$. Since the left hand side is even, the right hand side must be even as well. Thus $j$ must be even, so $j=2 m$ for some $m$. Therefore $n=3 j=3(2 m)=6 m$, and so $6 \mid n$.
14. How can you tell when a number is divisible by $\{2,3,4,5,6,7,8,9,11,17\}$ ?
(a) A number is divisible by $2 / 5$ if and only if the last digit is divisible by $2 / 5$.
(b) A number is divisible by $3 / 9$ if and only if the sum of its digits is divisible by $3 / 9$.
(c) A number is divisible by $4 / 8$ if and only if the last $2 / 3$ digits are divisible by $4 / 8$.
(d) A number is divisible by 6 if and only if it is divisible by 2 and 3 .
(e) A number is divisible by 11 if and only if the sum of its even-place digits minus the sum of its odd-place digits (or vice versa) is divisible by 11.
This proof uses the fact that 99 is divisible by 11 (and therefore so is $999 \ldots 9$, for any even number of 9 's). So, for example,

$$
\begin{aligned}
11 \mid 23456 & \Leftrightarrow 11 \mid 2 \cdot 10000+34 \cdot 100+56 \\
& \Leftrightarrow 11 \mid 2 \cdot 9999+234 \cdot 99+34+56 \\
& \Leftrightarrow 11 \mid 2+34+56 \\
& \Leftrightarrow 11 \mid(3+5) \cdot 10+(2+4+6) \\
& \Leftrightarrow 11 \mid(3+5) \cdot 10-(3+5) \cdot 11+(2+4+6) \\
& \Leftrightarrow 11 \mid(2+4+6)-(3+5)
\end{aligned}
$$

(f) A similar trick to tell whether a number is divisible by 7 :

$$
\begin{aligned}
7 \mid 10 t+u & \Leftrightarrow 7 \mid 10 t+u-21 u \\
& \Leftrightarrow 7 \mid 10 t-20 u \\
& \Leftrightarrow 7 \mid 10(t-2 u) \\
& \Leftrightarrow 7 \mid t-2 u
\end{aligned}
$$

So for example, 3444 is divisible by 7 if and only if $344-2 \cdot 4=336$ is divisible by if and only if $33-2 \cdot 6=21$ is divisible by 7 (which it is).
Note: We have not yet justified the final step in this proof-that $7 \mid 10(t-2 u)$ if and only if $7 \mid(t-2 u)$. We will do so soon.
(g) $17 \mid 10 t+u$ if and only if $17 \mid t-5 u$. Proof similar to the proof for divisibility by 7 .

