Chapters 2.4, 3.2
 Tuesday, June 30

Sum and Product Notation

Evaluate:

1. $\sum_{i=1}^{4} i^{2}+3 i$
2. $\sum_{j=15}^{30} j^{2}$
3. $\sum_{i=1}^{3} \sum_{j=1}^{3} i+j+1$
4. $\prod_{k=1}^{3} \sum_{i=1}^{4} i k$

Show using the sum formulas that the sum of the first n positive odd numbers is equal to n^{2}.

How many rectangles of any size and orientation can be found on this 5×10 grid? (Note that perfect squares count as rectangles.)

How many rectangles on an $m \times n$ grid?

Find a formula (using summation notation) for the sum of the numbers on each row of this triangle. Bonus: show that the sum of each row is a cube.

| | | | 1 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 3 | | 5 | | |
| | 7 | | 9 | | 11 | |
| 13 | | 15 | | 17 | | 19 |

Big-Oh Notation

Show (without finding an exact formula for the sum) that $\sum_{i=1}^{n} i^{5}$ is $O\left(n^{6}\right)$.

Define $a_{n} \sim b_{n}$ if $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$. Prove: if $a_{n} \sim b_{n}$ and $b_{n} \sim c_{n}$ then $a_{n} \sim c_{n}$.

Suppose the sequence a_{n} is $\Theta\left(n^{k}\right)$. If we define $b_{n}=\sum_{i=1}^{n} a_{i}$, then prove that b_{n} is $\Theta\left(n^{k+1}\right)$. What does this say about building 2 -dimensional and 3 -dimensional objects?

Prove that if $a_{n}=O\left(b_{n}\right)$ and $c_{n}=O\left(b_{n}\right)$ then $a_{n}+c_{n}=O\left(b_{n}\right)$.

Disprove: if $a_{n}=O\left(b_{n}\right)$ and $a_{n}=O\left(c_{n}\right)$ then $a_{n}=O\left(b_{n}+c_{n}\right)$ (think negative numbers.)

Let $a_{n}, b_{n}>0$. Prove: $a_{n}=\Theta\left(b_{n}\right) \Leftrightarrow \ln \left(a_{n}\right)=\ln \left(b_{n}\right)+O(1)$. (What does $O(1)$ mean?)

