
Chapters 1.4-1.5: Quantifiers
Monday, Juney 29

English to Quantifier

1. There is a unique number x such that x2 = 0. (∃!x)(x2 = 0), or (∃x)(x2 = 0 ∧ (∀y)(y2 = 0→ y = x)).

2. 1 is the smallest positive integer. (∀x ∈ Z+)(1 ≤ x)

3. Every integer is either odd or even. (∀x ∈ Z)(x ∈ E ∨ x ∈ O), where E = even integers, O = odd
integers.

4. Either all integers or odd, or all integers are even. (∀x ∈ Z)(x ∈ O) ∨ (∀x ∈ Z)(x ∈ E). Note that two
separate for-all statements are needed here.

5. Any number divisible by 4 is also divisible by 2. Let F = numbers divisible by 4, E = even numbers.
(∀x ∈ F )(x ∈ E).

6. The sum of any two even numbers is even. (∀x ∈ E)(∀y ∈ E)(x + y ∈ E).

7. For any n ≥ 2 there is a prime number between n and 2n. (∀n ≥ 2)(∃p prime)(n < p < 2n).

8. Every even number greater than 2 can be written as the sum of two primes. (∀n > 2 even)(∃p, q prime)(p+
q = n)

9. Everybody doesn’t like something, but nobody doesn’t like Sara Lee. (2 propositions)

(a) (∀x)(∃y)(x does not like y)

(b) ¬(∃x)(x does not like Sara Lee), or

(c) (∀x)(x likes Sara Lee)

10. Everybody loves my baby, but my baby don’t love nobody but me. (2 propositions, maybe 3)

(a) (∀x)(L(x,B)), where B = my baby, L(x,y) = “x loves y”.

(b) (∀x)(x 6= M → ¬L(B, x)), where M = me

(c) L(B,M)

11. The previous lyrics are from an old song popularized by Louis Armstrong. Prove: if we take “every-
body” literally, then “my baby” and “me” must actually be the same person!

(a) Everybody loves my baby (given)

(b) Therefore, my baby loves my baby (instantiation)

(c) My baby does not love anybody but me (given)

(d) If my baby loves x then x is me (equivalent)

(e) Since my baby loves x, we conclude that x = me.

1



Quantifier to English

Write each of the following statements in English and decide whether they are true or false. The domain is
R unless otherwise specified.

1. (∀x)(x2 > 0)

For every real number x, x2 is positive. FALSE: x = 0 is a counterexample.

2. (∃x)(∀y)(x > y)

There is some x that is greater than all real numbers y. FALSE: x is never greater than itself, so we
instead conclude (∀x)(∃y)(x ≤ y).

3. (∀x)(∃y)(x > y)

For every x there is some y such that x is greater than y. TRUE: for any x, let y = x− 1.

4. (∀x > 0)(∃y)(0 < y < x)

For every positive number x there is a smaller positive number y. TRUE: for any x, let y = x/2.

5. (∀x)(∃y)(x + y = 10)

For any x there is a y such that x + y = 10. TRUE: let y = 10− x.

6. (∃x)(∀y)(x · y = y)

There is some x such that x · y = y for every y. TRUE: x = 1 is the unique answer.

Uniqueness

1. Prove that there is a unique number x such that x2 = 0.

First, 02 = 0, so such a number x exists.

Then if y2 = 0 we know that y = 0 or y = 0, so y = 0 is the only possibility. Therefore the solution is
unique.

2. Prove that there is a unique number x such that 3x + 5 = 23.

If 3x + 5 = 23 then 3x = 18 and so x = 6, meaning that there is at most one solution.

Then plugging in x = 6 shows that 3 · 6 + 5 = 18 + 5 = 23, so 6 is a solution.

Alternately, we could say that if y 6= 6 then 3y 6= 18 and so 3y + 5 6= 23.

3. Prove that the solution to x2 = 4 is not unique.

2 and −2 are both solutions.

4. Prove that there is a unique solution to x2 = 2x−1. (TYPO CORRECTED: originally said x2 = 2x+1)

If x2 = 2x− 1, then x2 − 2x + 1 = 0, so (x− 1)2 = 0 and x = 1. This means that there is at most one
solution.

Then since 12 = 2 · 1− 1, 1 is a valid solution.
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Maxima and Minima

1. How can you say “There is no largest integer”?

For every x ∈ Z there is a y ∈ Z such that y > x. (∀x ∈ Z)(∃y ∈ Z)(y > x).

2. How can you say “There is no smallest positive real number”?

For every positive real number there is a smaller real number.

(∀x > 0)(∃y > 0)(y < x).

Or: (@x > 0)(∀y > 0)(y ≥ x)

Let S ⊂ Z and T ⊂ Z be finite sets, so that max(S),min(S),max(T ), and min(T ) are all well-defined.

3. Prove: max(S ∪ T ) ≥ max(S). (Let s = max(S), then show that s ≤ max(S ∪ T )).

Let s = max(S). Then s ∈ S, so s ∈ S ∪ T , so by definition of max, s ≤ max(S ∪ T ).

4. Prove: max(S ∩ T ) ≤ max(S).

Let s = max(S ∩ T ). Then s ∈ S ∩ T , so s ∈ S. Therefore s ≤ max(S).

5. Let −S = [−s|s ∈ S]. Prove: min(−S) = −max(S). (Start with “let s = max(S). . . ”, then show that
−s = min(−S).)

Let s = max(S). Then s ∈ S, so −s ∈ −S by definition of −S.

Then let t ∈ −S be an arbitrary element. Then −t ∈ S, so −t ≤ s by definition of max. Therefore
(multiplying by -1), −s ≤ t.

6. (Harder) Prove that max(S ∪ T ) = max(max(S),max(T )).

Let x = max(S ∪ T ). Then either x ∈ S (in which case x ≤ max(S)) or x ∈ T (in which case
x ≤ max(T )). In either of these cases, x ≤ max(max(S),max(T )). Therefore max(S ∪ T ) ≤
max(max(S),max(T )).

Let m = max(max(S),max(T )) for convenience. Either m = max(S) or m = max(T ), but in either
case m ∈ S ∪ T , and so m ≤ max(S ∪ T ). Therefore max(S ∪ T ) ≥ max(max(S),max(T )).

Since m ≥ x and m ≤ x, we conclude that the two are equal.

Games

1. Let M = {rock, paper, scissors}, and let D(x, y) stand for “x defeats y.” How can you say “No move
in rock-paper-scissors is guaranteed to win” in quantifier notation?

(∀x ∈M)(∃y ∈M)(¬D(x, y)).

2. Now let N = M ∪ {tiger claw}, where tiger claw never loses. How can you say “There is a move that
never loses” in quantifier notation?

(∃x ∈M)(∀y ∈M)(¬D(y, x)).
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