Chapters 1.4-1.5: Quantifiers Monday, Juney 29

English to Quantifier

- 1. There is a unique number x such that $x^2 = 0$. $(\exists ! x)(x^2 = 0)$, or $(\exists x)(x^2 = 0 \land (\forall y)(y^2 = 0 \rightarrow y = x))$.
- 2. 1 is the smallest positive integer. $(\forall x \in \mathbb{Z}^+)(1 \leq x)$
- 3. Every integer is either odd or even. $(\forall x \in \mathbb{Z})(x \in E \vee x \in O)$, where E = even integers, O = odd integers.
- 4. Either all integers or odd, or all integers are even. $(\forall x \in \mathbb{Z})(x \in O) \vee (\forall x \in \mathbb{Z})(x \in E)$. Note that two separate for-all statements are needed here.
- 5. Any number divisible by 4 is also divisible by 2. Let F = numbers divisible by 4, E = even numbers. $(\forall x \in F)(x \in E).$
- 6. The sum of any two even numbers is even. $(\forall x \in E)(\forall y \in E)(x+y \in E)$.
- 7. For any $n \ge 2$ there is a prime number between n and 2n. $(\forall n \ge 2)(\exists p \text{ prime})(n .$
- 8. Every even number greater than 2 can be written as the sum of two primes. $(\forall n > 2 \text{ even})(\exists p, q \text{ prime})(p+$ q = n
- 9. Everybody doesn't like something, but nobody doesn't like Sara Lee. (2 propositions)
 - (a) $(\forall x)(\exists y)(x \text{ does not like } y)$
 - (b) $\neg(\exists x)$ (x does not like Sara Lee), or
 - (c) $(\forall x)$ (x likes Sara Lee)
- 10. Everybody loves my baby, but my baby don't love nobody but me. (2 propositions, maybe 3)
 - (a) $(\forall x)(L(x,B))$, where B = my baby, L(x,y) = "x loves y".
 - (b) $(\forall x)(x \neq M \rightarrow \neg L(B, x))$, where M = me
 - (c) L(B,M)
- 11. The previous lyrics are from an old song popularized by Louis Armstrong. Prove: if we take "everybody" literally, then "my baby" and "me" must actually be the same person!
 - (a) Everybody loves my baby (given)
 - (b) Therefore, my baby loves my baby (instantiation)
 - (c) My baby does not love anybody but me (given)
 - (d) If my baby loves x then x is me (equivalent)
 - (e) Since my baby loves x, we conclude that x = me.

Quantifier to English

Write each of the following statements in English and decide whether they are true or false. The domain is \mathbb{R} unless otherwise specified.

1. $(\forall x)(x^2 > 0)$

For every real number x, x^2 is positive. FALSE: x = 0 is a counterexample.

2. $(\exists x)(\forall y)(x > y)$

There is some x that is greater than all real numbers y. FALSE: x is never greater than itself, so we instead conclude $(\forall x)(\exists y)(x \leq y)$.

3. $(\forall x)(\exists y)(x > y)$

For every x there is some y such that x is greater than y. TRUE: for any x, let y = x - 1.

4. $(\forall x > 0)(\exists y)(0 < y < x)$

For every positive number x there is a smaller positive number y. TRUE: for any x, let y = x/2.

5. $(\forall x)(\exists y)(x+y=10)$

For any x there is a y such that x + y = 10. TRUE: let y = 10 - x.

6. $(\exists x)(\forall y)(x \cdot y = y)$

There is some x such that $x \cdot y = y$ for every y. TRUE: x = 1 is the unique answer.

Uniqueness

1. Prove that there is a unique number x such that $x^2 = 0$.

First, $0^2 = 0$, so such a number x exists.

Then if $y^2 = 0$ we know that y = 0 or y = 0, so y = 0 is the only possibility. Therefore the solution is unique.

2. Prove that there is a unique number x such that 3x + 5 = 23.

If 3x + 5 = 23 then 3x = 18 and so x = 6, meaning that there is at most one solution.

Then plugging in x = 6 shows that $3 \cdot 6 + 5 = 18 + 5 = 23$, so 6 is a solution.

Alternately, we could say that if $y \neq 6$ then $3y \neq 18$ and so $3y + 5 \neq 23$.

3. Prove that the solution to $x^2 = 4$ is not unique.

2 and -2 are both solutions.

4. Prove that there is a unique solution to $x^2 = 2x - 1$. (TYPO CORRECTED: originally said $x^2 = 2x + 1$) If $x^2 = 2x - 1$, then $x^2 - 2x + 1 = 0$, so $(x - 1)^2 = 0$ and x = 1. This means that there is at most one solution.

Then since $1^2 = 2 \cdot 1 - 1$, 1 is a valid solution.

Maxima and Minima

1. How can you say "There is no largest integer"?

For every $x \in \mathbb{Z}$ there is a $y \in \mathbb{Z}$ such that y > x. $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(y > x)$.

2. How can you say "There is no smallest positive real number"?

For every positive real number there is a smaller real number.

$$(\forall x > 0)(\exists y > 0)(y < x).$$

Or:
$$(\nexists x > 0)(\forall y > 0)(y \ge x)$$

Let $S \subset \mathbb{Z}$ and $T \subset \mathbb{Z}$ be finite sets, so that $\max(S), \min(S), \max(T),$ and $\min(T)$ are all well-defined.

3. Prove: $\max(S \cup T) \ge \max(S)$. (Let $s = \max(S)$, then show that $s \le \max(S \cup T)$).

Let $s = \max(S)$. Then $s \in S$, so $s \in S \cup T$, so by definition of max, $s \leq \max(S \cup T)$.

4. Prove: $\max(S \cap T) \leq \max(S)$.

Let $s = \max(S \cap T)$. Then $s \in S \cap T$, so $s \in S$. Therefore $s \leq \max(S)$.

5. Let $-S = [-s|s \in S]$. Prove: $\min(-S) = -\max(S)$. (Start with "let $s = \max(S)$...", then show that $-s = \min(-S)$.)

Let $s = \max(S)$. Then $s \in S$, so $-s \in -S$ by definition of -S.

Then let $t \in -S$ be an arbitrary element. Then $-t \in S$, so $-t \le s$ by definition of max. Therefore (multiplying by -1), $-s \le t$.

6. (Harder) Prove that $\max(S \cup T) = \max(\max(S), \max(T))$.

Let $x = \max(S \cup T)$. Then either $x \in S$ (in which case $x \leq \max(S)$) or $x \in T$ (in which case $x \leq \max(T)$). In either of these cases, $x \leq \max(\max(S), \max(T))$. Therefore $\max(S \cup T) \leq \max(\max(S), \max(T))$.

Let $m = \max(\max(S), \max(T))$ for convenience. Either $m = \max(S)$ or $m = \max(T)$, but in either case $m \in S \cup T$, and so $m \leq \max(S \cup T)$. Therefore $\max(S \cup T) \geq \max(\max(S), \max(T))$.

Since $m \geq x$ and $m \leq x$, we conclude that the two are equal.

Games

1. Let $M = \{\text{rock, paper, scissors}\}\$, and let D(x, y) stand for "x defeats y." How can you say "No move in rock-paper-scissors is guaranteed to win" in quantifier notation?

$$(\forall x \in M)(\exists y \in M)(\neg D(x, y)).$$

2. Now let $N = M \cup \{\text{tiger claw}\}$, where tiger claw never loses. How can you say "There is a move that never loses" in quantifier notation?

$$(\exists x \in M)(\forall y \in M)(\neg D(y, x)).$$