Chapters 2.1-2.2: Sets

Friday, June 26

Set Building and Operations

1. Let the universe U be the integers. A be the set of all prime numbers. Let B be the set of even numbers. Let C be the set of all numbers greater than 10 . Find an element in each of the following:

- $A \cap B$
- $A \cap C$
- $B \cap C$
- $A \cap \bar{C}$

2. Continuing with the above problem, how many elements are in A ? $A \cap B ? A \cap B \cap C$?
3. If U is the universal set, what are \bar{U} and $\bar{\emptyset}$?
4. Find the elements of the set $[a, b]-(a, b)$.
5. Let $A=\{2 z+1 \mid z \in \mathbb{Z}\}$. Let $B=\{3 z \mid z \in \mathbb{Z}\}$. Describe the set $A \cap B$ in words.
6. Express the following sets using $\mathbb{N}, \mathbb{Z}, \mathbb{R}$, and set builder notation:
(a) The set of all even positive numbers.
(b) The set of all non-zero real numbers.
(c) $\{1,2,4,8,16, \ldots\}$
(d) The set of all real numbers that are not integers.
(e) The set of all ordered pairs of integers whose sum is 10 .
7. Let $U=\{1,2,3,4\}$ (the universe), $A=\{2,3\}, B=\{1,2\}$. Express each of the following sets in terms of A, B and set operations.
(a) $\{2\}$
(b) $\{1,2,3\}$
(c) $\{1,4\}$
(d) $\{4\}$
(e) $\{1,2,4\}$
8. Let A, B and C be three generic sets. Draw Venn diagrams for each of the following:
(a) $A \cap(B-C)$
(b) $A \cap(\bar{B} \cup \bar{C})$
(c) $A-(B \cup C)$
(d) $A \cup \bar{B}-\bar{C}$
9. What can you say about the sets A and B if
(a) $A \cup B=A$?
(b) $A-B=A$?
(c) $A-B=B-A$?
(d) $A \cap B=A$?
(e) $A \cup B=B \cup A$?

Relation to Propositional Logic

10. What rule in propositional logic does the identity $A \cap U=A$ correspond to? What does U correspond to?
11. What does \emptyset correspond to?

Proofs

Prove the following:
12. $(-\infty, a] \subset(-\infty, b]$ if and only if $a \leq b$.
13. $(-\infty, a] \subset(-\infty, b)$ if and only if $a<b$.
14. $A \subset B$ if and only if $A \cap B=A$.
15. $A \subset B$ if and only if $A \cup B=B$.
16. If $A \subset B$ and $B \subset C$ then $A \subset C$. What rule of inference does this correspond to?
17. If $A \subset B$ and $\bar{A} \subset C$ then $B \cup C=U$. What rule of inference does this correspond to?

