Chapters 2.1-2.2: Sets

Friday, June 26

Set Building and Operations

1. Let the universe U be the integers. A be the set of all prime numbers. Let B be the set of even numbers. Let C be the set of all numbers greater than 10. Find an element in each of the following:

 $\bullet \ A\cap B$

• $A \cap C$

 \bullet $B \cap C$

• $A \cap \overline{C}$

- 2. Continuing with the above problem, how many elements are in A? $A \cap B$? $A \cap B \cap C$?
- 3. If U is the universal set, what are \overline{U} and $\overline{\emptyset}$?
- 4. Find the elements of the set [a, b] (a, b).
- 5. Let $A = \{2z + 1 | z \in \mathbb{Z}\}$. Let $B = \{3z | z \in \mathbb{Z}\}$. Describe the set $A \cap B$ in words.
- 6. Express the following sets using $\mathbb{N}, \mathbb{Z}, \mathbb{R}$, and set builder notation:
 - (a) The set of all even positive numbers.
 - (b) The set of all non-zero real numbers.
 - (c) $\{1, 2, 4, 8, 16, \ldots\}$
 - (d) The set of all real numbers that are not integers.
 - (e) The set of all ordered pairs of integers whose sum is 10.
- 7. Let $U = \{1, 2, 3, 4\}$ (the universe), $A = \{2, 3\}$, $B = \{1, 2\}$. Express each of the following sets in terms of A, B and set operations.
 - (a) $\{2\}$
 - (b) $\{1, 2, 3\}$
 - (c) $\{1,4\}$
 - $(d) \{4\}$
 - (e) $\{1, 2, 4\}$
- 8. Let A, B and C be three generic sets. Draw Venn diagrams for each of the following:
 - (a) $A \cap (B-C)$
 - (b) $A \cap (\overline{B} \cup \overline{C})$
 - (c) $A (B \cup C)$
 - (d) $A \cup \overline{B} \overline{C}$

- 9. What can you say about the sets A and B if
 - (a) $A \cup B = A$?
 - (b) A B = A?
 - (c) A B = B A?
 - (d) $A \cap B = A$?
 - (e) $A \cup B = B \cup A$?

Relation to Propositional Logic

- 10. What rule in propositional logic does the identity $A \cap U = A$ correspond to? What does U correspond to?
- 11. What does \emptyset correspond to?

Proofs

Prove the following:

- 12. $(-\infty, a] \subset (-\infty, b]$ if and only if $a \leq b$.
- 13. $(-\infty, a] \subset (-\infty, b)$ if and only if a < b.
- 14. $A \subset B$ if and only if $A \cap B = A$.
- 15. $A \subset B$ if and only if $A \cup B = B$.
- 16. If $A \subset B$ and $B \subset C$ then $A \subset C$. What rule of inference does this correspond to?
- 17. If $A \subset B$ and $\overline{A} \subset C$ then $B \cup C = U$. What rule of inference does this correspond to?