Chapters 2.1-2.2: Sets

Friday, June 26

Set Building and Operations

1. Let the universe U be the integers. A be the set of all prime numbers. Let B be the set of even numbers. Let C be the set of all numbers greater than 10 . Find an element in each of the following:

- $A \cap B: 2$ (in fact, $A \cap B=\{2\}$, the singleton set)
- $B \cap C: 12,14,16 \ldots$
- $A \cap C: 11,13,17,19,23, \ldots$
- $A \cap \bar{C}: 2,3,5,7$

2. Continuing with the above problem, how many elements are in A ? $A \cap B$? $A \cap B \cap C$?
3. If U is the universal set, what are \bar{U} and $\bar{\emptyset}$?

$$
\bar{U}=\emptyset, \bar{\emptyset}=U
$$

4. Find the elements of the set $[a, b]-(a, b)$.

$$
[a, b]-(a, b)=\{a, b\}
$$

5. Let $A=\{2 z+1 \mid z \in \mathbb{Z}\}$. Let $B=\{3 z \mid z \in \mathbb{Z}\}$. Describe the set $A \cap B$ in words.
$A \cap B$ is the set of all odd numbers divisible by 3 .
6. Express the following sets using $\mathbb{N}, \mathbb{Z}, \mathbb{R}$, and set builder notation:
(a) The set of all even positive numbers. $[2 z \mid z \in \mathbb{Z}, z>0]$
(b) The set of all non-zero real numbers. $\mathbb{R}-\{0\}$
(c) $\{1,2,4,8,16, \ldots\}=\left[2^{n} \mid n \in \mathbb{N}\right]$
(d) The set of all real numbers that are not integers. $\mathbb{R}-\mathbb{Z}$
(e) The set of all ordered pairs of integers whose sum is 10 . $[(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x+y=10]$
7. Let $U=\{1,2,3,4\}$ (the universe), $A=\{2,3\}, B=\{1,2\}$. Express each of the following sets in terms of A, B and set operations.
(a) $\{2\}=A \cap B$
(b) $\{1,2,3\}=A \cup B$
(c) $\{1,4\}=\bar{A}$
(d) $\{4\}=U-(A \cup B)=U-A-B$
(e) $\{1,2,4\}=U-(A-B)$
8. Let A, B and C be three generic sets. Draw Venn diagrams for each of the following:
(a) $A \cap(B-C)$
(b) $A \cap(\bar{B} \cup \bar{C})$
(c) $A-(B \cup C)$
(d) $A \cup \bar{B}-\bar{C}$
9. What can you say about the sets A and B if
(a) $A \cup B=A ? B \subset A$
(b) $A-B=A$? $B \cap A=\emptyset$
(c) $A-B=B-A$? $A=B$
(d) $A \cap B=A$? $A \subset B$
(e) $A \cup B=B \cup A$? Nothing at all-this is true for any two sets.

Relation to Propositional Logic

10. What rule in propositional logic does the identity $A \cap U=A$ correspond to? What does U correspond to?
$A \cap U=A$ is equivalent to $a \wedge \mathbf{T} \equiv a$. The universal set U corresponds to \mathbf{T}.
11. What does \emptyset correspond to?
\emptyset corresponds to \mathbf{F}. One example: $A \cup \emptyset=A$ corresponds to $a \vee \mathbf{F} \equiv a$

Proofs

Prove the following:
12. $(-\infty, a] \subset(-\infty, b]$ if and only if $a \leq b$.

Suppose $a \leq b$. Then if $x \in(-\infty, a], x \leq a$ by definition and so $x \leq b$, meaning $x \in(-\infty, b]$. Thus $x \in(-\infty, a] \Rightarrow x \in(-\infty, b]$ and so $(-\infty, a] \subset(-\infty, b]$.
On the other hand, suppose $a>b$. Then $a \in(-\infty, a]$ but $a \notin(-\infty, b]$.
13. $(-\infty, a] \subset(-\infty, b)$ if and only if $a<b$.

Let $A=(-\infty, a], B=(-\infty, b)$.
Suppose $a<b$. Then if $x \in A, x \leq a<b$ and so $x<b$, meaning that $x \in B$. Therefore $A \subset B$.
If $a \geq b$ then $a \in A$ but $a \notin B$.
14. $A \subset B$ if and only if $A \cap B=A$.

Suppose $A \subset B$. It is clear that $A \cap B \subset A$ (if $x \in A$ and $x \in B$ then $x \in A$), so we just need to show that $A \subset A \cap B$. If $x \in A$, then $x \in B$, so x is in both A and B, meaning $x \in A \cap B$. This shows that $A \subset A \cap B$.
On the other hand, suppose that $A \nsubseteq B$. This means that there exists $x \in A$ such that $x \notin B$. But this means that $x \notin A \cap B$, which shows that $A \cap B \neq A$.
Putting the forward and inverse statements together, we conclude that $A \subset B$ if and only if $A \cap B=A$.
15. $A \subset B$ if and only if $A \cup B=B$.

Suppose $A \subset B$. It is clear that $B \subset A \cup B$ (if $x \in B$ then $x \in A$ or $x \in B$), so we just need to prove that $A \cup B \subset B$. If $x \in A \cup B$, then either $x \in B$ (in which case we are done) or $x \in A$, which implies that $x \in B$ (since $A \subset B$). Therefore if $x \in A \cup B$, it follows that $x \in B$, and so $A \cup B \subset B$.
If $A \nsubseteq B$, then there exists $x \in A$ such that $x \notin B$. But then $x \in A \cup B$, so $A \cup B \neq B$.
Putting the forward and inverse statements together, we conclude that $A \subset B$ if and only if $A \cup B=B$.

There is a second way to prove this: $A \subset B$ is equivalent to $\bar{B} \subset \bar{A}$ and $A \cup B=B$ is equivalent to $\bar{A} \cap \bar{B}=\bar{B}$. Then renaming $\bar{B}=C, \bar{A}=D$, we get that we need to prove that $D \subset C$ if and only if $D \cap C=C$, which is the same claim as in the previous problem. Therefore, if we have proved one of these two problems, we have proved the other.
16. If $A \subset B$ and $B \subset C$ then $A \subset C$. What rule of inference does this correspond to?

Suppose $x \in A$. Then $x \in B$ (since $A \subset B$) and so $x \in C$ (since $B \subset C$). Therefore $A \subset C$.
This corresponds to the rule Hypothetical Syllogism (if $p \rightarrow q$ and $q \rightarrow r$ then $p \rightarrow r$).
17. If $A \subset B$ and $\bar{A} \subset C$ then $B \cup C=U$. What rule of inference does this correspond to?

Take some $x \in U$. We consider two cases: either $x \in A$ or $x \notin A$ (in which case $x \in \bar{A}$).
If $x \in A$ then $x \in B$ and so $x \in B \cup C$.
If $x \in \bar{A}$ then $x \in C$ and so $x \in B \cup C$.
Either way, $x \in B \cup C$ for any $x \in U$ and so $B \cup C=U$. This corresponds to (a variation of) the rule of Resolution: if $p \rightarrow q$ and $\neg p \rightarrow r$ then $q \vee r$ is always true.

