Chapters 1.7-1.8: Proofs

Thursday, June 25

Proof by Cases

Prove each of the following:

- 1. 101 is prime (you only need to check for divisors up to 11...why?)
- 2. For any integer n, $n^3 n$ is divisible by 2.
- 3. For any integer n, $n^3 n$ is divisible by 3.
- 4. For any integer n, either n^2 is divisible by 4 or $n^2 1$ is divisible by 4.
- 5. There are no integers a and b such that $a^2 + b^2 = 23$.
- 6. $|a|^2 = a^2$
- 7. $\max(a, b) \ge \min(a, b)$.
- 8. $\max(a, b) + \min(a, b) = a + b$
- 9. $\max(a, b) \min(a, b) = |a b|$.
- 10. $\max(a,b) = \frac{a+b+|a-b|}{2}$.
- 11. (Harder) $|a+b| \le |a| + |b|$ for all a and b.

Arrow Diagram

Draw a diagram showing how these statements about a real number x relate to each other:

1.
$$x = 2$$
 or $x = -2$

3.
$$x^2 = 4$$

$$5. x \text{ is even}$$

2.
$$x = 2$$

4.
$$x^2 - 4 = 0$$

6.
$$x > 0$$

Biconditionals

State the four forms (forward, inverse, converse, and contrapositive) of each of these statements. Which forms appear to be simplest to prove?

- 1. x = 3 if and only if $x^2 = 9$ and $x \neq -3$.
- 2. n is even if and only if 3n + 3 is odd.
- 3. $x^2 = 1$ if and only if x = 1 or x = -1 (one direction requires a proof by cases).
- 4. $\max(a, b) = \min(a, b)$ if and only if a = b.
- 5. |a| = 0 if and only if a = 0.
- 6. $x^2 = 0$ if and only if x = 0.

Backwards Reasoning

- 1. Prove that $(x-3)^2 + (x+3)^2 = 2(x+3)(x-3) + 36$
- 2. Prove that $(a+b-c)^2 = (a+b)^2 + (a-c)^2 + (b-c)^2 a^2 b^2 c^2$.

It's the harmonic-geometric-arithmetic-quadratic mean inequality! If x and y are non-negative real numbers, prove that

$$\frac{2xy}{x+y} \le \sqrt{xy} \le \frac{x+y}{2} \le \sqrt{\frac{x^2+y^2}{2}},$$

with equality at each step if and only if x = y (Prove the three inequalities one at a time).