Chapters 1.7-1.8: Proofs

Thursday, June 25

Proof by Cases

Prove each of the following:

1. 101 is prime (you only need to check for divisors up to $11 \ldots$ why?)
2. For any integer $n, n^{3}-n$ is divisible by 2 .
3. For any integer $n, n^{3}-n$ is divisible by 3 .
4. For any integer n, either n^{2} is divisible by 4 or $n^{2}-1$ is divisible by 4 .
5. There are no integers a and b such that $a^{2}+b^{2}=23$.
6. $|a|^{2}=a^{2}$
7. $\max (a, b) \geq \min (a, b)$.
8. $\max (a, b)+\min (a, b)=a+b$
9. $\max (a, b)-\min (a, b)=|a-b|$.
10. $\max (a, b)=\frac{a+b+|a-b|}{2}$.
11. (Harder) $|a+b| \leq|a|+|b|$ for all a and b.

Arrow Diagram

Draw a diagram showing how these statements about a real number x relate to each other:

1. $x=2$ or $x=-2$
2. $x=2$
3. $x^{2}=4$
4. $x^{2}-4=0$
5. x is even
6. $x>0$

Biconditionals

State the four forms (forward, inverse, converse, and contrapositive) of each of these statements. Which forms appear to be simplest to prove?

1. $x=3$ if and only if $x^{2}=9$ and $x \neq-3$.
2. n is even if and only if $3 n+3$ is odd.
3. $x^{2}=1$ if and only if $x=1$ or $x=-1$ (one direction requires a proof by cases).
4. $\max (a, b)=\min (a, b)$ if and only if $a=b$.
5. $|a|=0$ if and only if $a=0$.
6. $x^{2}=0$ if and only if $x=0$.

Backwards Reasoning

1. Prove that $(x-3)^{2}+(x+3)^{2}=2(x+3)(x-3)+36$
2. Prove that $(a+b-c)^{2}=(a+b)^{2}+(a-c)^{2}+(b-c)^{2}-a^{2}-b^{2}-c^{2}$.

It's the harmonic-geometric-arithmetic-quadratic mean inequality! If x and y are non-negative real numbers, prove that

$$
\frac{2 x y}{x+y} \leq \sqrt{x y} \leq \frac{x+y}{2} \leq \sqrt{\frac{x^{2}+y^{2}}{2}}
$$

with equality at each step if and only if $x=y$ (Prove the three inequalities one at a time).

