
Chapters 1.7-1.8: Proofs
Thursday, June 25

Proof by Cases

Prove each of the following:

1. 101 is prime (you only need to check for divisors up to 11. . . why?)

Technically, this is a proof by exhaustion (or brute force) rather than by caes, but it would go as
follows:

101 is not divisible by 2.

101 is not divisible by 3.

101 is not divisible by 4.

101 is not divisible by 5.

101 is not divisible by 6.

101 is not divisible by 7.

101 is not divisible by 8.

101 is not divisible by 9.

101 is not divisible by 10.

2. For any integer n, n3 − n is divisible by 2.

Break this one into cases depending on whether n is even or odd: First suppose that n = 2k is even.
Then n3 − n = 8k3 − 2k = 2(4k3 − k) is also even.

If n = 2k + 1 is odd, then

n3 − n = (2k + 1)3 − (2k + 1)

= 8k3 + 12k2 + 6k + 1− 2k − 1

= 8k3 + 12k2 + 4k

= 2(4k3 + 6k2 + 2k),

and so is again even. This completes the proof.

A second method would be to use the fact that the sum of two even numbers is even and the sum of
two odd numbers is even:

If n is even then n3 is even and so n3 − n is even.

If n is odd then n3 is also odd and so n3 − n is even.

3. For any integer n, n3 − n is divisible by 3.

We will make our lives simpler by factoring n3 − n as n(n + 1)(n− 1).

If n is of the form 3k then n(n + 1)(n− 1) = 3k(3k + 1)(3k − 1), which is divisible by 3.

If n is of the form 3k + 1 then n(n + 1)(n− 1) = (3k + 1)(3k + 2)(3k) = 3k(3k + 1)(3k + 2), which is
divisible by 3.

If n is of the form 3k + 2 then n(n+ 1)(n− 1) = (3k + 2)(3k + 3)(3k + 1) = 3(k + 1)(3k + 2)(3k + 1),
which is divisible by 3.
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4. For any integer n, either n2 is divisible by 4 or n2 − 1 is divisible by 4.

We could take on the four cases n = 4k, 4k + 1, 4k + 2, 4k + 3 separately, but as it turns out we only
need to look at whether n is odd or even.

If n = 2k is even then n2 = 4k2, which is divisible by 4.

If n = 2k + 1 is odd then n2 − 1 = 4k2 + 4k + 1− 1 = 4k2 + 4k, which is again divisible by 4.

5. There are no integers a and b such that a2 + b2 = 23.

Use the fact that if |a| ≥ 5 or |b| ≥ 5 then a2+b2 > 23, so a and b must be in the set {−4,−3,−2,−1, 0, 1, 2, 3, 4}.
This means that the only possibilities for a2 and b2 are 0, 1, 4, 9, and 16.

We could check all 25 possible pairs individually, but we don’t have to do that much work: if a2 ≤ 9
and b2 ≤ 9 then a2 + b2 ≤ 18, so we need either a2 or b2 to be 16. . . make it a2. But then this implies
that 16 + b2 = 23, meaning b2 = 7. Since this has no integer solutions, there are no integers a and b
such that a2 + b2 = 23.

6. |a|2 = a2

If a ≥ 0 then |a|2 = a2.

If a < 0 then |a|2 = (−a)2 = a2.

7. max(a, b) ≥ min(a, b).

If a ≥ b then max(a, b) = a ≥ b = min(a, b).

If a < b then max(a, b) = b > a = min(a, b).

Either way, max(a, b) ≥ min(a, b).

8. max(a, b) + min(a, b) = a + b

If a ≥ b then max(a, b) = a and min(a, b) = b, so max(a, b) + min(a, b) = a + b.

If a < b then max(a, b) = b and min(a, b) = a, so max(a, b) + min(a, b) = b + a = a + b.

9. max(a, b)−min(a, b) = |a− b|.
Suppose a ≥ b. Then max(a, b) = a, min(a, b) = b, and a − b ≥ 0 (so |a − b| = a − b). Therefore
max(a, b)−min(a, b) = a− b = |a− b|.
Suppose a < b. Then max(a, b) = b, min(a, b) = a, and a − b < 0 (so |a − b| = b − a). Therefore
max(a, b)−min(a, b) = b− a = |a− b|.

10. max(a, b) =
a + b + |a− b|

2
.

If a ≥ b then max(a, b) = a and |a− b| = a− b.

Therefore,

a + b + |a− b|
2

=
a + b + a− b

2

=
2a

2
= a

= max(a, b)

If a < b then max(a, b) = b and |a− b| = b− a, so

a + b + |a− b|
2

=
a + b + b− a

2
= b

= max(a, b)
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11. (Harder) |a + b| ≤ |a|+ |b| for all a and b.

One method: Since |a + b| ≥ 0 and |a|+ |b| ≥ 0, we use the rule that (when x ≥ 0 and y ≥ 0) x2 ≤ y2

if and only if x ≤ y. In this particular case, we can say that

|a + b| ≤ |a|+ |b| ⇔ |a + b|2 ≤ (|a|+ |b|)2

⇔ (a + b)2 ≤ |a|2 + 2|a||b|+ |b|2

⇔ a2 + 2ab + b2 ≤ a2 + 2|a||b|+ |b|2

⇔ ab ≤ |a||b|

So our desired conclusion is true if and only if ab ≤ |a||b| for all real a and b. Now the cases are a little
simpler:

If a ≥ 0 and b ≥ 0 then |a||b| = ab.

If a < 0 and b < 0 then |a||b| = (−a)(−b) = ab.

If exactly one of a and b is negative then ab < 0 ≤ |a||b|.
In all of these cases, ab = |a||b|. By our prior chain of reasoning, this implies that |a + b| ≤ |a|+ |b|.

Arrow Diagram

Draw a diagram showing how these statements about a real number x relate to each other:

1. x = 2 or x = −2

2. x = 2

3. x2 = 4

4. x2 − 4 = 0

5. x is even

6. x > 0

Statements 1, 3, and 4 are all equivalent. 2 implies 1 (and therefore also 3 or 4). Any of 1,2,3, or 4 implies
5. Only 2 implies 6.

(5)⇐ (4)⇔ (3)⇔ (1)⇐ (2)⇒ (6)
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Biconditionals

State the four forms (forward, inverse, converse, and contrapositive) of each of these statements. Which
forms appear to be simplest to prove?

Remark 1 There is some ambiguity as to which statement should be the “forward” condition, and it would
be a little more clear if we had written A ⇔ B instead of “A if and only if B.” But in any case, it doesn’t
matter–you can pick any version you like for the forward condition because you will have to prove both
directions anyway.

1. x = 3 if and only if x2 = 9 and x 6= −3.

Forward: If x = 3 then x2 = 9 and x 6= −3.

Inverse: If x 6= 3 then x2 6= 9 or x = −3.

Converse: If x2 = 9 and x 6= −3, then x = 3.

Contrapositive: If x2 6= 9 or x = −3, then x 6= 3.

The forward and converse are easiest to prove. The forward should be very simple. For the converse,
if x2 = 9 then x = ±3. Since x 6= −3, it follows that x = 3.

2. n is even if and only if 3n + 3 is odd. (assume n is an integer)

Forward: If n is even then 3n + 3 is odd.

Inverse: If n is odd then 3n + 3 is even.

Converse: If 3n + 3 is odd then n is even.

Contrapositive: If 3n + 3 is even then n is odd.

The forward and inverse are easiest to prove. If n = 2k is even then 3n + 3 = 6k + 3 = 2(3k + 1) + 1
is odd. If n = 2k + 1 is odd then 3n + 3 = 6k + 6 = 2(3k + 3) is even.

3. x2 = 1 if and only if x = 1 or x = −1 (one direction requires a proof by cases).

Forward: If x2 = 1 then x = 1 or x = −1.

Inverse: If x2 6= 1 then x 6= 1 and x 6= −1.

Converse: If x = 1 or x = −1 then x2 = 1.

Contrapositive: If x 6= 1 and x 6= −1 then x2 6= 1.

The forward and converse are easiest to prove. For the forward, we can say 0 = x2− 1 = (x+ 1)(x− 1)
and conclude that x + 1 = 0 or x− 1 = 0.

The converse is a small proof by cases: If x = 1 then x2 = 1. If x = −1 then x2 = 1. Therefore if
x = ±1 then x2 = 1.

4. max(a, b) = min(a, b) if and only if a = b.

Forward: If max(a, b) = min(a, b) then a = b.

Inverse: If max(a, b) 6= min(a, b) then a 6= b.

Converse: If a = b then max(a, b) = min(a, b).

Contrapositive: If a 6= b then max(a, b) 6= min(a, b).

The converse is easiest: if a = b then max(a, b) = a = b = min(a, b).

Let’s try the contrapositive, along with a proof by cases: Ifa 6= b then a > b or a < b. If a > b then
max(a, b) = a > b = min(a, b). If a < b then max(a, b) = b > a = min(a, b).
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Remark 2 This proof would be a good time to say “without loss of generality, a > b.” There is nothing
particularly special about the fact that one is called a and the other b, and the proofs for a > b and
a < b are exactly the same, but with the variable names reversed. If we note this, then we only have to
prove one of the cases.

5. |a| = 0 if and only if a = 0.

Forward: If |a| = 0 then a = 0.

Inverse: If |a| 6= 0 then a 6= 0.

Converse: If a = 0 then |a| = 0.

Contrapositive: If a 6= 0 then |a| 6= 0.

The converse is again easiest to prove: If a = 0 then |a| = a = 0.

Let’s go with the contrapositive again: If a 6= 0 then a > 0 or a < 0. If a > 0 then |a| = a > 0. If
a < 0 then |a| = −a, but since a < 0 it follows that −a > 0, and so |a| > 0. Either way, |a| 6= 0.

6. x2 = 0 if and only if x = 0.

Forward: If x2 = 0 then x = 0.

Inverse: If x2 6= 0 then x 6= 0.

Converse: If x = 0 then x2 = 0.

Contrapositive: If x 6= 0 then x2 6= 0.

For the forward: If x2 = 0 then x = 0 or x = 0, and therefore x = 0.

Conversely: if x = 0 then x2 = 0 · 0 = 0.

Backwards Reasoning

1. Prove that (x− 3)2 + (x + 3)2 = 2(x + 3)(x− 3) + 36.

(x− 3)2 + (x + 3)2 = 2(x + 3)(x− 3) + 36⇔ x2 − 6x + 9 + x2 + 6x + 9 = 2(x2 − 9) + 36

⇔ 2x2 + 18 = 2x2 − 18 + 36

⇔ 2x2 + 18 = 2x2 + 18

The last statement is true, so (because our statements were connect by “if and only iff” conditions)
we can conclude that the initial proposition is true.

We could also rewrite this proof as one long string of equalities. This has the advantage of being easier
to read, but it would be much harder to prove the equalities in this order:

(x− 3)2 + (x + 3)2 = 2x2 + 18

= 2x2 − 18 + 36

= 2(x2 − 9) + 36

= 2(x + 3)(x− 3) + 36
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2. Prove that (a + b− c)2 = (a + b)2 + (a− c)2 + (b− c)2 − a2 − b2 − c2.

(a + b− c)2 = (a + b)2 + (a− c)2 + (b− c)2 − a2 − b2 − c2

⇔ a2 + b2 + c2 + 2ab− 2ac− 2bc = a2 + 2ab + b2 + a2 − 2ac + c2 + b2 − 2bc + c2 − a2 − b2 − c2

⇔ a2 + b2 + c2 + 2ab− 2ac− 2bc = a2 + b2 + c2 + 2ab− 2ac− 2bc

It’s the harmonic-geometric-arithmetic-quadratic mean inequality! If x and y are non-negative real numbers,
prove that

2xy

x + y
≤ √xy ≤ x + y

2
≤

√
x2 + y2

2
,

with equality at each step if and only if x = y (Prove the three inequalities one at a time).
We’ll go through the middle inequality here–the rest are up to you. Since x ≥ 0 and y ≥ 0, we will use the
fact that a > b if and only if a2 > b2 (when a, b ≥ 0):

√
xy ≤ x + y

2

⇔ xy ≤ x2 + 2xy + y2

4

⇔ 4xy ≤ x2 + 2xy + y2

⇔ 0 ≤ x2 − 2xy + y2

⇔ 0 ≤ (x− y)2

The last statement is always true. Since the propositions are connected by biconditionals, we conclude that
if x, y ≥ 0 then

√
xy ≤ x+y

2 .
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