Math 55: Practice Midterm 2
 Midterm: Friday, July 17

1. Find $\sum_{i=1}^{2} \prod_{j=1}^{3}(i+j)$
2. Define $a_{1}=1$ and for $n \geq 2$ define $a_{n}=\sum_{i=1}^{n-1} a_{i}$.
(a) Find a_{5}.
(b) Find a formula for a_{n} where $n \geq 2$ and prove that it is correct.
3. Find the greatest common divisor of 184 and 306.
4. Find a solution to $184 x+306 y=d$, where $d=\operatorname{gcd}(184,306)$.
5. Solve: $184 x \equiv 16(\bmod 306)$.
6. Find all solutions to $36 x \equiv 17(\bmod 60)$.
7. Find all solutions to $36 x \equiv 18(\bmod 60)$.
8. Evaluate the following:
(a) $815(\bmod 7)$
(b) $23234 \cdot 101(\bmod 4)$
(c) $(-17) \cdot 82(\bmod 3)$
(d) $5^{88}(\bmod 6)$
(e) $98 \cdot 96(\bmod 99)$
(f) $2^{87}(\bmod 7)$
(g) $2^{87}(\bmod 35)$
9. Prove that 101 is prime.
10. Say whether each of the following equations has an integer solution:
(a) $x \equiv 18(\bmod 45), x \equiv 1(\bmod 2)$
(b) $x \equiv 13(\bmod 15), x \equiv 5(\bmod 6)$
(c) $x \equiv 12(\bmod 15), x \equiv 3(\bmod 6)$
11. Prove that if $a \equiv b(\bmod m)$ then $-a \equiv m-b(\bmod m)$.
12. Prove that the equation $x^{2}+3 x+5 y=1$ has no solutions where x and y are integers.
13. How many divisors does 100 have?
14. How many numbers are relatively prime to 100 ?
15. How many zeroes does 100 ! end with?
