Math 55: Practice Midterm 2

Midterm: Friday, July 17

1. Find $\sum_{i=1}^{2} \prod_{j=1}^{3}(i+j)$

$$
\begin{aligned}
\sum_{i=1}^{2} \prod_{j=1}^{3}(i+j) & =\prod_{j=1}^{3}(1+j)+\prod_{j=1}^{3}(2+j) \\
& =(2 \cdot 3 \cdot 4)+(3 \cdot 4 \cdot 5) \\
& =24+60 \\
& =84
\end{aligned}
$$

2. Define $a_{1}=1$ and for $n \geq 2$ define $a_{n}=\sum_{i=1}^{n-1} a_{i}$.
(a) Find a_{5}.

$$
a_{1}=1, a_{2}=1, a_{3}=2, a_{4}=4, a_{5}=8
$$

(b) Find a formula for a_{n} where $n \geq 2$ and prove that it is correct.

Conjecture that $a_{n}=2^{n-2}$ for $n \geq 2$. Proof by strong induction:
Base case: when $n=2, a_{2}=1=2^{0}$.
Inductive step: Suppose that $a_{k}=2^{k-2}$ for $2 \leq k \leq n$. Then

$$
\begin{aligned}
a_{n+1} & =\sum_{i=1}^{n} a_{i} \\
& =a_{1}+\sum_{i=2}^{n} 2^{i-2} \\
& =1+\sum_{j=0}^{n-2} 2^{j} \\
& =1+\left(2^{n-1}-1\right) \\
& =2^{n-1}
\end{aligned}
$$

3. Find the greatest common divisor of 184 and 306.

$$
\begin{aligned}
\operatorname{gcd}(184,306) & =\operatorname{gcd}(184,306-184) \\
& =\operatorname{gcd}(184,122) \\
& =\operatorname{gcd}(62,122) \\
& =\operatorname{gcd}(62,60) \\
& =\operatorname{gcd}(2,60) \\
& =2
\end{aligned}
$$

4. Find a solution to $184 x+306 y=d$, where $d=\operatorname{gcd}(184,306)$.

Rewrite the Euclidean algorithm and reverse as follows (taking some shortcuts to reduce the number of steps):

$$
\begin{aligned}
306-2 * 184 & =-62 \\
184-3 * 62 & =-2 \\
184+3 *(306-2 * 184) & =-2 \\
5 * 184-3 * 306 & =2
\end{aligned}
$$

5. Solve: $184 x \equiv 16(\bmod 306)$.

The previous solution gave $5 \cdot 184 \equiv 2(\bmod 306)$, so multiplying both sides by 8 gives $40 \cdot 184 \equiv 16$ $(\bmod 306)$. Solution: $x \equiv 40(\bmod 306)$.
6. Find all solutions to $36 x \equiv 17(\bmod 60)$.

36 and 60 are both divisible by 6 but 17 is not. No solutions.
7. Find all solutions to $36 x \equiv 18(\bmod 60)$.

Divide all numbers by 6 to get $6 x \equiv 3(\bmod 10) .6$ and 10 are both even but 3 is odd. Still no solutions.
8. Evaluate the following:
(a) $815(\bmod 7)$
$815=116 \cdot 7+3$, so $815 \equiv 3(\bmod 7)$.
(b) $23234 \cdot 101(\bmod 4)$
$23234 \cdot 101 \equiv 2 \cdot 1 \equiv 2(\bmod 4)$.
(c) $(-17) \cdot 82(\bmod 3)$
$(-17) \cdot 82 \equiv 1 \cdot 1 \equiv 1(\bmod 3)$
(d) $5^{88}(\bmod 6)$
$5^{88} \equiv(-1)^{88} \equiv 1(\bmod 6)$.
(e) $98.96(\bmod 99)$
$98 \cdot 96 \equiv(-1) \cdot(-3) \equiv 3(\bmod 99)$.
(f) $2^{87}(\bmod 7)$

By FLT, $2^{6} \equiv 1(\bmod 7)$. So $2^{87} \equiv 2^{6 \cdot 14} \cdot 2^{3} \equiv\left(2^{6}\right)^{14} \cdot 8 \equiv 1 \cdot 1 \equiv 1(\bmod 7)$.
(g) $2^{87}(\bmod 35)$

Solve $\bmod 5$ and $\bmod 7$ separately, using FLT. $2^{87} \equiv 2^{3} \equiv 3(\bmod 5)$ and $2^{87} \equiv 1(\bmod 7)$, so solving the two congruences simultaneously gives $2^{87} \equiv 8(\bmod 35)$.
9. Prove that 101 is prime.

101 is not divisible by $2,3,5,7$, or 11 . We don't have to check any further since if a number n is composite it has a divisor less than or equal to \sqrt{n}.
10. Say whether each of the following equations has an integer solution:
(a) $x \equiv 18(\bmod 45), x \equiv 1(\bmod 2)$

Yes by CRT, since $\operatorname{gcd}(45,2)=1$.
(b) $x \equiv 13(\bmod 15), x \equiv 5(\bmod 6)$

No, since the first equation implies $x \equiv 1(\bmod 3)$ but the second implies $x \equiv 2(\bmod 3)$.
(c) $x \equiv 12(\bmod 15), x \equiv 3(\bmod 6)$

Yes, since we can turn this into the three equations $x \equiv 2(\bmod 5), x \equiv 0(\bmod 3)$, and $x \equiv 1$ $(\bmod 2)$. Then by the CRT, there exists a unique solution $\bmod 30$.
11. Prove that if $a \equiv b(\bmod m)$ then $-a \equiv m-b(\bmod m)$.

If $a \equiv b(\bmod m)$ then $m \mid(a-b)$, so $m \mid(b-a)-m=(-a)-(m-b)$. Therefore $-a \equiv m-b(\bmod m)$.
Or: If $a \equiv b(\bmod m)$ then there is some k such that $a=b+k m$. Then $-a=-b-k m=m-b-(k+1) m$, so there exists some $j \in \mathbb{Z}$ such that $-a=(m-b)+j m$. Therefore $-a \equiv m-b(\bmod m)$.
12. Prove that the equation $x^{2}+3 x+5 y=1$ has no solutions where x and y are integers.

This is equivalent to the statement that $x^{2}+3 x \equiv 1(\bmod 5)$ has no solutions for any integer x. We just need to check the five cases $x \equiv 0,1,2,3,4(\bmod 5)$, which give the answers $0,4,0,3,3(\bmod 5)$. None of these are 1, so the equation has no integer solutions.
13. How many divisors does 100 have?
$100=2^{2} 5^{2}$, so 100 has $(2+1)(2+1)=9$ divisors. (These are $1,2,4,5,10,20,25,50$, and 100.)
14. How many numbers are relatively prime to 100 ?

50 numbers are divisible by 2 and only numbers ending in 5 are divisible by 5 but not 2 . There are 10 of those, so 100-50-10 = 40 numbers are relatively prime to 100 .
Using a formula for $\varphi(100)$, we can also say $\varphi(100)=100 \cdot(1-1 / 2)(1-1 / 5)=40$.
15. How many zeroes does 100 ! end with?

This would be equal to the number of fives in the prime factorization of 100 !, which is equal to $\lfloor 100 / 5\rfloor+\lfloor 100 / 25\rfloor=20+4=24$.

