Practice Final

Final: Friday, August 14

NAME: \qquad

1. Show that the expression $(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$ is neither a tautology nor a contradiction.
2. State the negation and prove or disprove: $(\forall x)(\exists y)(\forall z)(x y \geq z)$
3. Prove that if x and y are positive then $\sqrt{\frac{x^{2}+y^{2}}{2}} \geq \frac{x+y}{2}$.
4. Evaluate: $\sum_{i=1}^{10} \sum_{j=1}^{i} i-2 j$
5. Find integers $x, y \in \mathbb{Z}$ such that $18 x+40 y=14$
6. Determine whether each of the systems of equations has a solution:
(a)

$$
\begin{aligned}
& x \equiv 15 \quad(\bmod 35) \\
& x \equiv 8 \quad(\bmod 10) \\
& x \equiv 1 \quad(\bmod 7)
\end{aligned}
$$

(b)

$$
\begin{array}{ll}
x \equiv 3 & (\bmod 6) \\
x \equiv 7 & (\bmod 8) \\
x \equiv 4 & (\bmod 5)
\end{array}
$$

7. Prove using induction that if G is a tree with at least 2 vertices then $\chi(G)=2$. You may use the fact that every tree with 2 or more vertices has at least 2 vertices of degree 1 .
8. State the inverse, converse, and contrapositve, and prove or disprove each one: "If a number is divisible by 4 and 5 then it is divisible by $20 . "$
9. I draw cards from a deck until I have drawn all 4 aces. What is the expected number of kings that I will have drawn?
10. Prove that if the events E and F are positively correlated then the events E and \bar{F} are negatively correlated.
11. 10 cows, 10 ducks, and 10 pigs are all standing in a line, their positions distributed at random. What is the expected number of times a cow will be standing directly in front of a duck?
12. If I flip a fair coin 40 times, prove that the probability of getting 30 or more heads is less than or equal to $1 / 20$.
13. There is an urn with 5 red balls and 3 yellow balls. I draw 2 balls from the urn, flipping a fair coin to decide whether to draw with or without replacement. If I draw 1 red ball and 1 yellow, what is the probability that I drew without replacement?
14. Give an example of each of the following:
(a) A connected graph with no cycles.
(b) A graph where every vertex has degree 3 .
(c) A graph with an Euler path but no Euler circuit.
(d) A graph with a Hamilton cycle but no Euler path.
(e) A graph with $\chi(G)=\alpha(G)=\omega(G)=4$.
(f) A non-planar triangle-free graph.
15. Remove an edge of your choice from K_{5}. How many automorphisms does the resulting graph have?
16. I glue triangles and squares together in the shape of a ball so that 4 shapes fit together at every vertex. Show that the number of triangles needed is the same no matter how many squares are used.
