NAME: ____________________________

1. Show that the expression \((p \Rightarrow q) \Rightarrow (q \Rightarrow p)\) is neither a tautology nor a contradiction.

 If \(p\) is false but \(q\) is true then the entire expression is \((F \Rightarrow T) \Rightarrow (T \Rightarrow F) \equiv T \Rightarrow F \equiv F\). Otherwise the entire expression is true.

2. State the negation and prove or disprove: \((\forall x)(\exists y)(\forall z)(xy \geq z)\)

 The negation: \((\exists x)(\forall y)(\exists z)(xy < z)\). The original statement is false, and we will show it by proving
 the negation: let \(x = 0\). Then for any \(y\), let \(z = 1\). Then \(xy = 0 < 1 = z\).

3. Prove that if \(x\) and \(y\) are positive then \(\sqrt{\frac{x^2 + y^2}{2}} \geq \frac{x + y}{2}\).

 Work backwards from the conclusion:
 \[
 \frac{\sqrt{x^2 + y^2}}{2} \geq \frac{x + y}{2} \iff \frac{x^2 + y^2}{2} \geq \frac{x^2 + 2xy + y^2}{4} \\
 \iff 2x^2 + 2y^2 \geq x^2 + 2xy + y^2 \\
 \iff x^2 - 2xy + y^2 \geq 0 \\
 \iff (x - y)^2 \geq 0
 \]

 The last inequality is true for all \(x\) and \(y\) and the inequalities are connected as if-and-only-if statements, so
 the inequality that we desired to prove is also true.

4. Evaluate: \(\sum_{i=1}^{10} \sum_{j=1}^{i} i - 2j\)

 \[
 \sum_{i=1}^{10} \sum_{j=1}^{i} i - 2j = \sum_{i=1}^{10} \left(i^2 - 2 \sum_{j=1}^{i} j \right) \\
 = \sum_{i=1}^{10} \left(i^2 - 2 \cdot \frac{i^2 + i}{2} \right) \\
 = \sum_{i=1}^{10} -i \\
 = -55
 \]

5. Find integers \(x, y \in \mathbb{Z}\) such that \(18x + 40y = 14\)

 \(a\) Method 1: Find the gcd and solve \(18x + 40y = 2\), then multiply by 7:
 \[
 40 - 2 \cdot 18 = 4 \\
 18 - 4 \cdot 4 = 2 \\
 18 - 4 \cdot (40 - 2 \cdot 18) = 2 \\
 9 \cdot 18 - 4 \cdot 40 = 2 \\
 63 \cdot 18 - 28 \cdot 40 = 14
 \]
(b) Method 2: Trial and error. \[40 - 2 \cdot 18 = 4 \text{ and } 18 - 4 = 14, \text{ so } 18 - (40 - 2 \cdot 18) = 3 \cdot 18 - 40 = 14. \]

Note also that \[20 \cdot 18 - 9 \cdot 40 = 0, \text{ so the two solutions (63,-28) and (3, -1) differ by a multiple of (20,-9).} \]

6. Determine whether each of the systems of equations has a solution:

(a)

\[
\begin{align*}
x &\equiv 15 \pmod{35} \\
x &\equiv 8 \pmod{10} \\
x &\equiv 1 \pmod{7}
\end{align*}
\]

The first congruence implies that \(x \equiv 0 \pmod{5} \) and the second that \(x \equiv 3 \pmod{5} \), so there is no solution.

(b)

\[
\begin{align*}
x &\equiv 3 \pmod{6} \\
x &\equiv 7 \pmod{8} \\
x &\equiv 4 \pmod{5}
\end{align*}
\]

The first two congruences are the only ones involving non-relatively-prime numbers. The first implies that \(x \equiv 1 \pmod{2} \) and the second that \(x \equiv 1 \pmod{2} \), and so are compatible. By the Chinese Remainder Theorem, the solution will be unique modulo \(3 \cdot 8 \cdot 5 = 120 \).

7. Prove using induction that if \(G \) is a tree with at least 2 vertices then \(\chi(G) = 2 \). You may use the fact that every tree with 2 or more vertices has at least 2 vertices of degree 1.

Base case: If \(G \) has 2 vertices then \(\chi(G) = 2 \).

Inductive step: suppose that any tree with \(n \) vertices can be colored, and consider a tree with \(n + 1 \) vertices. At least one of these vertices has degree 1, so remove it for now. What remains is a tree with \(n \) vertices, which by the inductive hypothesis can be colored with 2 colors. Now replace the vertex that was removed, and color it the color opposite its lone neighbor.

8. State the inverse, converse, and contrapositive, and prove or disprove each one: “If a number is divisible by 4 and 5 then it is divisible by 20.”

Forward statement: true. If \(4|n \) and \(5|n \), then the fact that \(\gcd(4, 5) = 1 \) implies that \(4 \cdot 5|n \).

Inverse: If a number is not divisible by 4 or not divisible by 5 then it is not divisible by 20. True because the inverse is equivalent to the converse.

Converse: If \(20|n \) then \(4|n \) and \(5|n \). True because if \(20|n \) then \(20k = n \) for some \(k \), but \(20k = 5(4k) = 4(5k) \).

9. I draw cards from a deck until I have drawn all 4 aces. What is the expected number of kings that I will have drawn?

Let \(E_i \) be the event that the \(i \)-th king comes before the last ace. The chance of this is \(4/5 \), since there is a \(1/5 \) chance that a random shuffle of the cards AAAAK will end in the king.

There are 4 kings, so the total expected number of kings drawn will be \(4 \cdot (4/5) = 16/5 \).

10. Prove that if the events \(E \) and \(F \) are positively correlated then the events \(E \) and \(\overline{F} \) are negatively correlated.

We will do a proof by contradiction: say that \(p(E \cap F) > p(E)p(F) \) but \(p(E \cap \overline{F}) \geq p(E)p(\overline{F}) \). Then \(p(E) = p(E \cap (F \cup \overline{F})) = p((E \cap F) \cup (E \cap \overline{F})) = p(E \cap F) + p(E \cap \overline{F}) > p(E)p(F) + p(E)p(\overline{F}) = p(\overline{F}) \).
This is a contradiction, so our assumption that \(p(E \cap F) \geq p(E)p(F) \) must have been incorrect. Therefore if \(E \) and \(F \) are positively correlated then \(E \) and \(F \) are negatively correlated.

11. 10 cows, 10 ducks, and 10 pigs are all standing in a line, their positions distributed at random. What is the expected number of times a cow will be standing directly in front of a duck?

Let \(E_{i,j} \) be the event that cow \(i \) is directly in front of duck \(j \). The probability of each such event is \(\frac{29}{30 \cdot 29} = \frac{1}{30} \). There are 100 such events so the total expected value is \(\frac{100}{30} = \frac{10}{3} \).

12. If I flip a fair coin 40 times, prove that the probability of getting 30 or more heads is less than or equal to 1/20.

The variance is \(np(1-p) = \frac{40}{4} = 10 \), so by Chebyshev’s inequality \(p(|H - 25| \geq 10) = \frac{10}{10^2} = \frac{1}{10} \). This is the probability of getting at least 30 or at most 20 heads, so the probability of getting just 30 or more heads is half that: \(\frac{1}{20} \).

13. There is an urn with 5 red balls and 3 yellow balls. I draw 2 balls from the urn, flipping a fair coin to decide whether to draw with or without replacement. If I draw 1 red ball and 1 yellow, what is the probability that I drew without replacement?

If I draw without replacement then the chance of getting 1 red and 1 yellow is \(\frac{15}{8} \cdot \frac{15}{32} = \frac{15}{12} = \frac{15}{28} \). If I draw with replacement the chance is \(2 \cdot \frac{3}{8} \cdot \frac{5}{8} = \frac{15}{32} \). The chance of having drawn without replacement is therefore \(\frac{15/28}{15/28+15/32} = \frac{32}{60} = \frac{8}{15} \).

14. Give an example of each of the following:

(a) A connected graph with no cycles.
 A single vertex will do, or any tree.

(b) A graph where every vertex has degree 3.
 \(K_4, K_{3,3}, \) and the graph of a cube will all do.

(c) A graph with an Euler path but no Euler circuit.
 \(K_{2,3} \) will do, or any connected graph with 2 vertices of odd degree.

(d) A graph with a Hamilton cycle but no Euler path.
 \(K_4, \) or \(K_n \) for any even number \(n \geq 4 \).

(e) A graph with \(\chi(G) = \alpha(G) = \omega(G) = 4 \).
 \(K_4 \) with three lone vertices added to the graph.

(f) A non-planar triangle-free graph.
 \(K_{3,3} \).

15. Remove an edge of your choice from \(K_5 \). How many automorphisms does the resulting graph have?

There are 2 vertices of degree 3 and 3 of degree 4. The 2 vertices of degree 3 can be interchanged and the ones of degree 4 can be permuted in any order. The number of automorphisms is therefore \(2 \cdot 3! = 12 \).

16. I glue triangles and squares together in the shape of a ball so that 4 shapes fit together at every vertex. Show that the number of triangles needed is the same no matter how many squares are used.

Each triangle contributes \(3/4 - 3/2 + 1 = 1/4 \) and each square contributes \(4/4 - 4/2 + 1 = 0 \). If \(T \) is the number of triangles and \(S \) is the number of squares, then \(T/4 + 0 \cdot S = 2 \), so \(T = 8 \). One such shape is the octahedron, with 8 triangles and no squares.