Practice Final

Final: Friday, August 14
NAME: \qquad

1. Show that the expression $(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$ is neither a tautology nor a contradiction.

If p is false but q is true then the entire expression is $(\mathbf{F} \Rightarrow \mathbf{T}) \Rightarrow(\mathbf{T} \Rightarrow \mathbf{F}) \equiv \mathbf{T} \Rightarrow \mathbf{F} \equiv \mathbf{F}$. Otherwise the entire expression is true.
2. State the negation and prove or disprove: $(\forall x)(\exists y)(\forall z)(x y \geq z)$

The negation: $(\exists x)(\forall y)(\exists z)(x y<z)$. The original statement is false, and we will show it by proving the negation: let $x=0$. Then for any y, let $z=1$. Then $x y=0<1=z$.
3. Prove that if x and y are positive then $\sqrt{\frac{x^{2}+y^{2}}{2}} \geq \frac{x+y}{2}$.

Work backwards from the conclusion:

$$
\begin{aligned}
\sqrt{\frac{x^{2}+y^{2}}{2}} \geq \frac{x+y}{2} & \Leftrightarrow \frac{x^{2}+y^{2}}{2} \geq \frac{x^{2}+2 x y+y^{2}}{4} \\
& \Leftrightarrow 2 x^{2}+2 y^{2} \geq x^{2}+2 x y+y^{2} \\
& \Leftrightarrow x^{2}-2 x y+y^{2} \geq 0 \\
& \Leftrightarrow(x-y)^{2} \geq 0
\end{aligned}
$$

The last inequality is true for all x and y and the inequalities are connected as if-and-only-if statements, so the inequality that we desired to prove is also true.
4. Evaluate: $\sum_{i=1}^{10} \sum_{j=1}^{i} i-2 j$

$$
\begin{aligned}
\sum_{i=1}^{10} \sum_{j=1}^{i} i-2 j & =\sum_{i=1}^{10}\left(i^{2}-2 \sum_{j=1}^{i} j\right) \\
& =\sum_{i=1}^{10}\left(i^{2}-2 \frac{i^{2}+i}{2}\right) \\
& =\sum_{i=1}^{10}-i \\
& =-55
\end{aligned}
$$

5. Find integers $x, y \in \mathbb{Z}$ such that $18 x+40 y=14$
(a) Method 1: Find the gcd and solve $18 x+40 y=2$, then multiply by 7 :

$$
\begin{aligned}
40-2 \cdot 18 & =4 \\
18-4 \cdot 4 & =2 \\
18-4 \cdot(40-2 \cdot 18) & =2 \\
9 \cdot 18-4 \cdot 40 & =2 \\
63 \cdot 18-28 \cdot 40 & =14
\end{aligned}
$$

(b) Method 2: Trial and error. $40-2 \cdot 18=4$ and $18-4=14$, so $18-(40-2 \cdot 18)=3 \cdot 18-40=14$. Note also that $20 \cdot 18-9 \cdot 40=0$, so the two solutions $(63,-28)$ and $(3,-1)$ differ by a multiple of $(20,-9)$.
6. Determine whether each of the systems of equations has a solution:
(a)

$$
\begin{aligned}
& x \equiv 15 \quad(\bmod 35) \\
& x \equiv 8 \quad(\bmod 10) \\
& x \equiv 1 \quad(\bmod 7)
\end{aligned}
$$

The first congruence implies that $x \equiv 0(\bmod 5)$ and the second that $x \equiv 3(\bmod 5)$, so there is no solution.
(b)

$$
\begin{array}{ll}
x \equiv 3 & (\bmod 6) \\
x \equiv 7 & (\bmod 8) \\
x \equiv 4 & (\bmod 5)
\end{array}
$$

The first two congruences are the only ones involving non-relatively-prime numbers. The first implies that $x \equiv 1(\bmod 2)$ and the second that $x \equiv 1(\bmod 2)$, and so are compatible. By the Chinese Remainder Theorem, the solution will be unique modulo $3 \cdot 8 \cdot 5=120$.
7. Prove using induction that if G is a tree with at least 2 vertices then $\chi(G)=2$. You may use the fact that every tree with 2 or more vertices has at least 2 vertices of degree 1 .
Base case: If G has 2 vertices then $\chi(G)=2$.
Inductive step: suppose that any tree with n vertices can be colored, and consider a tree with $n+1$ vertices. At least one of these vertices has degree 1, so remove it for now. What remains is a tree with n vertices, which by the inductive hypothesis can be colored with 2 colors. Now replace the vertex that was removed, and color it the color opposite its lone neighbor.
8. State the inverse, converse, and contrapositve, and prove or disprove each one: "If a number is divisible by 4 and 5 then it is divisible by $20 . "$
Forward statement: true. If $4 \mid n$ and $5 \mid n$, then the fact that $\operatorname{gcd}(4,5)=1$ implies that $4 \cdot 5 \mid n$.
Inverse: If a number is not divisible by 4 or not divisible by 5 then it is not divisible by 20 . True because the inverse is equivalent to the converse.
Converse: If $20 \mid n$ then $4 \mid n$ and $5 \mid n$. True because if $20 \mid n$ then $20 k=n$ for some k, but $20 k=5(4 k)=$ $4(5 k)$.
9. I draw cards from a deck until I have drawn all 4 aces. What is the expected number of kings that I will have drawn?
Let E_{i} be the event that the i-th king comes before the last ace. The chance of this is $4 / 5$, since there is a $1 / 5$ chance that a random shuffle of the cards AAAAK will end in the king.
There are 4 kings, so the total expected number of kings drawn will be $4 \cdot(4 / 5)=16 / 5$.
10. Prove that if the events E and F are positively correlated then the events E and \bar{F} are negatively correlated.

We will do a proof by contradiction: say that $p(E \cap F)>p(E) p(F)$ but $p(E \cap \bar{F}) \geq p(E) p(\bar{F})$. Then $p(E)=p(E \cap(F \cup \bar{F}))=p((E \cap F) \cup(E \cap \bar{F}))=p(E \cap F)+p(E \cap \bar{F})>p(E) p(F)+p(E) p(\bar{F})=p(E)$.

This is a contradiction, so our assumption that $p(E \cap \bar{F}) \geq p(E) p(\bar{F})$ must have been incorrect. Therefore if E and F are positively correlated then E and \bar{F} are negatively correlated.
11. 10 cows, 10 ducks, and 10 pigs are all standing in a line, their positions distributed at random. What is the expected number of times a cow will be standing directly in front of a duck?
Let $E_{i, j}$ be the event that cow i is directly in front of duck j. The probability of each such event is $29 /(30 \cdot 29)=1 / 30$. There are 100 such events so the total expected value is $100 / 30=10 / 3$.
12. If I flip a fair coin 40 times, prove that the probability of getting 30 or more heads is less than or equal to $1 / 20$.
The variance is $n p(1-p)=40 / 4=10$, so by Chebyshev's inequality $p(|H-25|>=10)=10 / 10^{2}=$ $1 / 10$. This is the probability of getting at least 30 or at most 20 heads, so the probability of getting just 30 or more heads is half that: $1 / 20$.
13. There is an urn with 5 red balls and 3 yellow balls. I draw 2 balls from the urn, flipping a fair coin to decide whether to draw with or without replacement. If I draw 1 red ball and 1 yellow, what is the probability that I drew without replacement?
If I draw without replacement then the chance of getting 1 red and 1 yellow is $15 /\binom{8}{2}=15 / 28$. If I draw with replacement the chance is $2(3 / 8)(5 / 8)=15 / 32$. The chance of having drawn without replacement is therefore $\frac{15 / 28}{15 / 28+15 / 32}=32 / 60=8 / 15$.
14. Give an example of each of the following:
(a) A connected graph with no cycles.

A single vertex will do, or any tree.
(b) A graph where every vertex has degree 3 . $K_{4}, K_{3,3}$, and the graph of a cube will all do.
(c) A graph with an Euler path but no Euler circuit.
$K_{2,3}$ will do, or any connected graph with 2 vertices of odd degree.
(d) A graph with a Hamilton cycle but no Euler path. K_{4}, or K_{n} for any even number $n \geq 4$.
(e) A graph with $\chi(G)=\alpha(G)=\omega(G)=4$. K_{4} with three lone vertices added to the graph.
(f) A non-planar triangle-free graph. $K_{3,3}$.
15. Remove an edge of your choice from K_{5}. How many automorphisms does the resulting graph have?

There are 2 vertices of degree 3 and 3 of degree 4 . The 2 vertices of degree 3 can be interchanged and the ones of degree 4 can be permuted in any order. The number of automorphisms is therefore $2 \cdot 3!=12$.
16. I glue triangles and squares together in the shape of a ball so that 4 shapes fit together at every vertex. Show that the number of triangles needed is the same no matter how many squares are used.
Each triangle contributes $3 / 4-3 / 2+1=1 / 4$ and each square contributes $4 / 4-4 / 2+1=0$. If T is the number of triangles and S is the number of squares, then $T / 4+0 \cdot S=2$, so $T=8$. One such shape is the octahedron, with 8 triangles and no squares.

