Math 55: Midterm 3

Friday, July 31
NAME: \qquad

1. (2 points each) Evaluate:
(a) $\binom{6}{3}=\frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1}=20$
(b) $\binom{10}{10}=1$
(c) $\binom{8}{9}=0$
(d) $\binom{180}{179}=180$
2. (5 points) Four juniors and six seniors form a club. How many ways are there to pick a president and a vice president if the president must be a senior but the vice president can be either a junior or a senior? (The two offices must go to different people.)
There are 6 ways to pick a senior for president and then $(4+6-1)=9$ ways to pick a vice president, so $6 \cdot 9=54$ ways in all.
3. (6 points) How many integers n with $1 \leq n \leq 1000$ are not divisible by 4 and not divisible by 5 ?

250 are divisible by 4,200 by 5 , and 50 by 4 and 5 , so $200+250-50=400$ are divisible by 4 or 5 . Therefore 600 are divisible by neither.
4. (5 points) I flip a coin. If it lands on tails, I get nothing. If it lands on heads, I roll a die and collect n dollars for rolling the number n. What is the expected value of the amount of money I will make?
Half chance of nothing, half chance of expected value 3.5 , so total expected value $3.5 / 2=1.75=7 / 4$.
5. (5 points) I have 10 identical coins to give to Alice, Bob, Carol, and Dwight. How many different ways can I distribute the coins if I give Bob at least 2 coins? You may leave your answer in the form ($\left.\begin{array}{l}n \\ k\end{array}\right)$.
Give Bob 2 coins, then stars and bars with 8 coins and 4 people, so $\binom{8+4-1}{4-1}=\binom{11}{3}$.
6. (5 points) I have a coin that lands on heads $2 / 3$ of the time and tails $1 / 3$ of the time. If I flip the coin 4 times, what is the probability that I get 2 heads? Write your answer as a single fraction p / q.
$\binom{4}{2}(1 / 3)^{2}(2 / 3)^{2}=24 / 81$.
7. (5 points) I have two urns. Urn A contains 5 red balls and 3 green balls. Urn B contains 1 red ball and 1 green ball. I pick an urn at random and draw a random ball from it. If I draw a red ball, what is the probability that I picked Urn A? Write your answer as a single fraction p / q.
$p(A \mid r)=\frac{p(r \mid A) p(A)}{p(r \mid A) p(A)+p(r \mid B) p(B)}=\frac{(5 / 8)(1 / 2)}{(5 / 8)(1 / 2)+(1 / 2)(1 / 2)}=\frac{5}{9}$.
8. (6 points) Prove that if E and \bar{E} are independent events then $p(E)=0$ or $p(E)=1$.
$0=p(E \cap \bar{E})=p(E) p(\bar{E})$, so $p(E)=0$ or $p(\bar{E})=0$ (in which case $p(E)=1-0=1$).
9. (5 points) There is a 30% chance overall that I will have a picnic tomorrow. There is a 40% chance of rain tomorrow. If it rains then there is a 0% chance that I will have a picnic. What is the chance that I will have a picnic if it does not rain?
$p(P \mid \bar{r})=\frac{p(P \cap \bar{r})}{p(\bar{r})}=\frac{p(P)}{p(\bar{r})}=\frac{.3}{.6}=.5$.

