# Math 55: Midterm 2 

Friday, July 17
NAME: $\qquad$

1. (2 points each) Evaluate:
(a) $\prod_{i=1}^{3} \sum_{j=1}^{2}(j+1)$
(b) $\sum_{\substack{d \geq 0 \\ d \mid 15}} d$
(c) $\sum_{1 \leq i \leq j \leq 3} j$
2. (1 point each) Compute:
(a) $157 \cdot 15 \bmod 7$
(b) $369 \cdot 377 \bmod 373$
(c) $2^{364} \bmod 7$
(d) $38^{38} \bmod 3$
3. True or False: $(\exists x \in \mathbb{Z})(\forall y, z \in \mathbb{Z})(13 y+40 z \neq x)$. ( 1 point for answer, 2 for explanation)
4. $(3,3$, and 2 points)
(a) Use the Euclidean Algorithm to find the greatest common divisor of 120 and 35.
(b) Find any two integers $x$ and $y$ so that $120 x+35 y=\operatorname{gcd}(120,35)$.
(c) Find the least common multiple of 120 and 35 .
5. (5 points) Prove that the following system of congruences has no integer solution:
$x \equiv 5(\bmod 30)$
$x \equiv 11(\bmod 12)$
$x \equiv 7(\bmod 15)$
6. Define the Fibonacci sequence by $f_{0}=0, f_{1}=1$, and $f_{n+1}=f_{n}+f_{n-1}$ for $n \geq 1$.

Define the Lucas sequence by $l_{0}=2, l_{1}=1$, and $l_{n+1}=l_{n}+l_{n-1}$ for $n \geq 1$.
(a) (2 points) Find $l_{6}$.
(b) (6 points) Prove that $l_{n}+l_{n+2}=5 f_{n+1}$ for all $n \geq 0$.
7. (6 points) Prove that if $a \mid m$ and $b \mid n$ then $a b \mid m n$.
8. (4 points) Find all solutions to $x^{2}+4 x \equiv 15(\bmod 19)$ with $0 \leq x<19$.
9. (3 points) Find all solutions to $x^{2} \equiv 35(\bmod 65)$ with $0 \leq x<65$.
10. (3 points) Let $a=5 k+8$ and let $b=4 k+3$ for some integer $k$. Show that $\operatorname{gcd}(a, b)$ is either 1 or 17 .

