Math 55: Midterm 2
 Friday, July 17

NAME: \qquad

1. (2 points each) Evaluate:
(a) $\prod_{i=1}^{3} \sum_{j=1}^{2}(j+1)=5 \cdot 5 \cdot 5=25$
(b) $\sum_{\substack{d \geq 0 \\ d \mid 15}} d=1+3+5+15=24$
(c) $\sum_{1 \leq i \leq j \leq 3} j=1+2+3+2+3+3=14$
2. (1 point each) Compute:
(a) $157 \cdot 15 \bmod 7=3 \cdot 1 \bmod 7=3$
(b) $369 \cdot 377 \bmod 373=(-4) \cdot 4 \bmod 373=-16 \bmod 373=357$
(c) $2^{364} \bmod 7=\left(2^{6}\right)^{6} 0 \cdot 2^{4} \bmod 7=2^{4} \bmod 7=1$
(d) $38^{38} \bmod 3=(-1)^{38} \bmod 3=1$
3. True or False: $(\exists x \in \mathbb{Z})(\forall y, z \in \mathbb{Z})(13 y+40 z \neq x)$. (1 point for answer, 2 for explanation)

False. Since $\operatorname{gcd}(13,40)=1$ there is a linear combination $13 a+40 b=1$, so for any $x \in \mathbb{Z}$ we have the solution $13 a x+40 b x=x$, so $y=a x, z=b x$.
4. (3, 3, and 2 points)
(a) Use the Euclidean Algorithm to find the greatest common divisor of 120 and 35 .

$$
\begin{aligned}
120-3 \cdot 35 & =15 \\
35-2 \cdot 15 & =5
\end{aligned}
$$

(b) Find any two integers x and y so that $120 x+35 y=\operatorname{gcd}(120,35)$.

$$
\begin{array}{r}
35-2 \cdot(120-3 \cdot 35)=5 \\
7 \cdot 35-2 \cdot 120=5
\end{array}
$$

(c) Find the least common multiple of 120 and 35 . The gcd is 5 so the lcm is $120 \cdot 35 / 7=120 \cdot 7=840$.
5. (5 points) Prove that the following system of congruences has no integer solution:
$x \equiv 5(\bmod 30)$
$x \equiv 11(\bmod 12)$
$x \equiv 7(\bmod 15)$
The first congruence implies $x \equiv 0(\bmod 5)$ but the third implies $x \equiv 2(\bmod 5)$.
6. Define the Fibonacci sequence by $f_{0}=0, f_{1}=1$, and $f_{n+1}=f_{n}+f_{n-1}$ for $n \geq 1$.

Define the Lucas sequence by $l_{0}=2, l_{1}=1$, and $l_{n+1}=l_{n}+l_{n-1}$ for $n \geq 1$.
(a) (2 points) Find $l_{6} .2,1,3,4,7,11,18 . l_{6}=18$.
(b) (6 points) Prove that $l_{n}+l_{n+2}=5 f_{n+1}$ for all $n \geq 0$.

Proof by induction. Base case: when $n=0, l_{0}+l_{2}=2+3=5=5 \cdot f_{1}$.
We also need a second base case, since our recurrence relation relies on the previous two terms: when $n=1, l_{1}+l_{3}=1+4=5=5 \cdot f_{2}$.
Inductive step: suppose that $l_{n}+l_{n+2}=5 \cdot f_{n+1}$. Then

$$
\begin{aligned}
l_{n+1}+l_{n+3} & =l_{n}+l_{n-1}+l_{n+2}+l_{n+1} \\
& =\left(l_{n}+l_{n+2}\right)+\left(l_{n-1}+l_{n+1}\right) \\
& =5 f_{n+1}+5 f_{n} \\
& =5 f_{n+2}
\end{aligned}
$$

7. (6 points) Prove that if $a \mid m$ and $b \mid n$ then $a b \mid m n$.

If $a \mid m$ and $b \mid n$ then $a k=m$ and $b j=n$ for some $j, k \in \mathbb{Z}$. Then $k j a b=m n$, so $a b \mid m n$.
8. (4 points) Find all solutions to $x^{2}+4 x \equiv 15(\bmod 19)$ with $0 \leq x<19$.

$$
\begin{aligned}
x^{2}+4 x & \equiv 15 \quad(\bmod 19) \\
x^{2}+4 x+4 & \equiv 0 \quad(\bmod 19) \\
(x+2)^{2} & \equiv 0 \quad(\bmod 19) \\
x+2 & \equiv 0 \quad(\bmod 19) \\
x & \equiv 17 \quad(\bmod 19)
\end{aligned}
$$

9. (3 points) Find all solutions to $x^{2} \equiv 35(\bmod 65)$ with $0 \leq x<65$.

$$
\begin{aligned}
x^{2} & \equiv 0 \quad(\bmod 5) \\
x & \equiv 0 \quad(\bmod 5) \\
x^{2} & \equiv 9 \quad(\bmod 13) \\
x & \equiv \pm 3 \quad(\bmod 13) \\
x & \equiv 10,55 \quad(\bmod 65)
\end{aligned}
$$

Alternatively, say $x^{2} \equiv 35+65=100(\bmod 65)$, so $x \equiv \pm 10(\bmod 65)$.
10. (3 points) Let $a=5 k+8$ and let $b=4 k+3$ for some integer k. Show that $\operatorname{gcd}(a, b)$ is either 1 or 17 . $\operatorname{gcd}(a, b)=\operatorname{gcd}(5 k+8,4 k+3)=\operatorname{gcd}(k+5,4 k+3)=\operatorname{gcd}(k+5,-17)$, which must be either 1 or 17 since 17 is prime.
Alternatively: $4 a-5 b=(20 k+32)-(20 k+15)=17$, which implies that $\operatorname{gcd}(a, b) \mid 17$. Since 17 is prime, the gcd must be 1 or 17 .

