Math 55: Midterm 1

Thursday, July 2

- 1. (1 point each) True or false? You do not have to show your work.
 - (a) $(p \land \neg p) \equiv \mathbf{F}$: TRUE
 - (b) $(p \land q) \Rightarrow p$: TRUE
 - (c) $(p \land q) \equiv p$: FALSE
 - (d) $\mathbb{R} \cup \mathbb{Z} = \mathbb{Z}$: FALSE
 - (e) $\mathbb{R} \cap \mathbb{Z} = \mathbb{Z}$: TRUE
- 2. (4 points) Prove using truth tables that $p \Rightarrow (p \lor q)$ is a tautology.

p	q	$p \lor q$	$p \Rightarrow (p \lor q)$
T	T	T	T
T	F	T	T
\overline{F}	T	T	T
\overline{F}	F	F	T

- 3. (1 point each) Let $A = \{1, 2, 3\}$, let $B = \{2, 4\}$, and let $C = \{1, 2, 5\}$. Find the following:
 - (a) $A \cup C = \{1, 2, 3, 5\}$
 - (b) $(B-A)\cap C=\emptyset$
 - (c) $B \times B = \{(2,2), (2,4), (4,2), (4,4)\}$
 - (d) $\mathcal{P}(B) = \{\emptyset, \{2\}, \{4\}, \{2,4\}\}$
 - (e) $\max(A C) = 3$
- 4. (4 points) Illustrate with a Venn Diagram, but do not prove: If $A \subset B$ and $C \subset \overline{B}$ then $A \cap C = \emptyset$.

- 5. (2 points each) Let f be the proposition "We go to the farmer's market," d be "We go to the deli", m be "We have money," and c be "We buy cheese." Write the following using f, d, m, c, and logical connectives:
 - (a) If we go to the farmer's market and have money, we will buy cheese.

$$(f \land m) \Rightarrow c$$

(b) We will go to the deli if and only if we do not go to the farmer's market.

$$d \Leftrightarrow \neg f$$

(c) We cannot buy cheese if we do not have money.

$$\neg m \Rightarrow \neg c$$
, or $c \Rightarrow m$

- 6. (2 points each) Assume the three statements in the previous question are all true. Which of the following conclusions must be true? Circle all that apply. You **do not** need to show your reasoning.
 - (a) We will go to the deli or we will go to the farmer's market. TRUE
 - (b) If we did not buy cheese, then we did not have money. FALSE
 - (c) If we go to the deli, then we will not buy cheese. FALSE
 - (d) If we do not go to the deli, then we will buy cheese if and only if we have money. TRUE
- 7. (3 points each) Write using quantifier notation. Say whether each statement is true or false. You **do** not have to explain your reasoning.
 - (a) For every real number x there is a real number y such that x + y is positive. TRUE

$$(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x+y>0)$$

(b) There is a real number x so that x + y is positive for every real number y. FALSE

$$(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x+y>0)$$

- 8. (6 points) Write the inverse, converse, and contrapositive to this statement: "If a > 0 and b > 0 then $a \cdot b > 0$." For each of those three statements, say whether it is true (you do not need to prove it) or find a counterexample if it is false.
 - Inverse: If $a \le 0$ or $b \le 0$ then $a \cdot b \le 0$. FALSE: a = b = -1.
 - Converse: If $a \cdot b > 0$ then a > 0 and b > 0. FALSE: a = b = -1.
 - If $a \cdot b \leq 0$ then $a \leq 0$ or $b \leq 0$. TRUE
- 9. (6 points) Pick ONE of the following problems to solve. Circle the problem you intend to solve.
 - (a) Let a and b be integers such that $a^2 = b + 1$. Prove that a is even if and only if b is odd.
 - (b) Prove that $a^2 + 3a$ is even for any integer a.
 - (a) If a = 2k is even then $4k^2 = b + 1$, so $b = 4k^2 1 = 2(2k^2 1) + 1$ and so b is odd. If a = 2k + 1 is odd then $4k^2 + 4k + 1 = b + 1$ so $b = 4k^2 + 4k = 2(2k^2 + 2k)$ and so b is even.
 - (b) If a = 2k is even then $a^2 + 3a = 4k^2 + 6k = 2(2k^2 + 3k)$, and so $a^2 + 3a$ is even. If a = 2k + 1 is odd then $a^2 + 3a = 4k^2 + 4k + 1 + 6k + 3 = 4k^2 + 10k + 4 = 2(2k^2 + 5k + 2)$, and so $a^2 + 3a$ is even.