Math 55: Homework 7
 Due Wednesday, July 13

1. Define a pair of sequences as follows: $a_{0}=1, b_{0}=1$, and $a_{n+1}=a_{n}+2 b_{n}, b_{n+1}=a_{n}+b_{n}$ for $n \geq 0$.
(a) If we define $c_{n}=a_{n} / b_{n}$, write out $c_{0}, c_{1}, c_{2}, \ldots c_{6}$.
(b) Prove by induction that $2 b_{n}^{2}-a_{n}^{2}=(-1)^{n}$.
(c) (OPTIONAL) What is $\lim _{n \rightarrow \infty} c_{n}$?
2. For integers $n \geq 1$, define $S(n)$ as follows:

$$
S(n)= \begin{cases}n / 2 & \text { if } \mathrm{n} \text { is even } \\ (n+1) / 2 & \text { if } \mathrm{n} \text { is odd }\end{cases}
$$

Using strong induction, prove that no matter what number n we begin at the sequence

$$
n, S(n), S(S(n)), S(S(S(n))), \ldots
$$

will eventually reach the number 1 . (For example, if $n=11$ we get the sequence $11,6,3,2,1$.)

