Math 55: Homework 5
Due Thursday, July 9

1. Express the following using sum and product notation:

\[1 + (2 \cdot 3) + (3 \cdot 4 \cdot 5) + (4 \cdot 5 \cdot 6 \cdot 7) + \ldots + (8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15) \]

\[\sum_{i=1}^{8} \prod_{j=0}^{i-1} (i + j) \]

2. Show that a number \(n \) is divisible by 4 if and only if one of these two cases holds: (1) the tens digit is even and the ones digit is divisible by 4, or (2) the tens digit is odd and the ones digit is equivalent to 2 (mod 4).

\[4 | 100h + 10t + u \iff 4 | 10t + u \]
\[\iff 4 | 2t + u \]

\(2t + u \) is divisible by 4 only when \(u \) is even, let \(u = 2k \). This means we need \(2t + 2k = 4n \), so our number is divisible by 4 if and only if \(t + k \) is even. This is true if and only if \(t \) and \(k \) are both even (meaning \(t \) is even and \(u \) is divisible by 4) or \(t \) and \(k \) are both odd (meaning \(t \) is odd and \(u = 2(2s + 1) = 4s + 2 \equiv 2 \) (mod 4)).

Or, once you get the condition \(4 | 2t + u \), make a table of \(t \) and \(u \) and \(2t + u \) mod 4:

<table>
<thead>
<tr>
<th>t, u</th>
<th>0 1 2 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>1</td>
<td>2 3 0 1</td>
</tr>
<tr>
<td>2</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>3</td>
<td>2 3 0 1</td>
</tr>
</tbody>
</table>

The only cases when \(2t + u \equiv 0 \) (mod 4) are when \(t \) is even and \(u \) is 0 mod 4 or when \(t \) is odd and \(u \) is 2 mod 4.

3. Show that 2034956098435602302 is not a perfect square. Your proof should not involve multiplying any large numbers.

The last digit is 2, but \(n^2 \) is never 2 mod 10.

4. What are the last two digits of \(341899^{100} \)?

“Last two digits” is the same as the remainder mod 100, so \(341899^{100} \pmod{100} = (-1)^{100} \pmod{100} = 1 \). The last two digits are “01.”