Warmup What is the diameter of C_7 ?
How many triangles (3-cycles) are there in K_4 ?
How many paths are there between any two vertices in C_5 ?
Is there a connected graph with 5 vertices and 3 edges? How many?
Is there a connected graph with 5 vertices and 4 edges? How many?
Trees

Draw a tree of your choice. How many vertices and edges does it have?

Draw more trees. Count the edges and vertices, and come up with a hypothesis.

Chapter 10.4 Thursday, Week 7

Theorems

Theorem 0.1 If G is a tree, then there is a unique path between any 2 vertices in G.

Proof: Assume there are 2 paths, then get a contradiction.

Theorem 0.2 Every tree with at least 2 vertices has at least 2 vertices of degree 1.

Proof: 1) Look at the endpoints of the longest path.

2) Every graph where every vertex has degree ≥ 2 has a cycle...

Theorem 0.3 Let G be a graph with n vertices. Then the following statements are equivalent:

- 1. G is a tree (connected and no cycles).
- 2. G has (n-1) edges and no cycles.
- 3. G has (n-1) edges and is connected.

Proof:

1. (1) \Rightarrow (2): Induction on n, using Theorem 0.2.

2. (2) \Rightarrow (3): Let T be the number of connected components. If component i has v_i vertices, then it has $(v_i - 1)$ edges, thus the whole graph has (n - T) edges. But the whole tree has (n - 1) edges, so T = 1.

3. (3) \Rightarrow (1): Suppose it has a cycle, then we could remove an edge without disconnecting the graph. Repeat until there are no cycles, but then there should be (n-1) edges. Contradiction.