Chapter 10.4
Thursday, Week 7

Warmup

What is the diameter of C_{7} ?

How many triangles (3-cycles) are there in K_{4} ?

How many paths are there between any two vertices in C_{5} ?

Is there a connected graph with 5 vertices and 3 edges? How many?

Is there a connected graph with 5 vertices and 4 edges? How many?

Trees

Draw a tree of your choice. How many vertices and edges does it have?

Draw more trees. Count the edges and vertices, and come up with a hypothesis.

Theorems

Theorem 0.1 If G is a tree, then there is a unique path between any 2 vertices in G.
Proof: Assume there are 2 paths, then get a contradiction.

Theorem 0.2 Every tree with at least 2 vertices has at least 2 vertices of degree 1.
Proof: 1) Look at the endpoints of the longest path.
2) Every graph where every vertex has degree ≥ 2 has a cycle...

Theorem 0.3 Let G be a graph with n vertices. Then the following statements are equivalent:

1. G is a tree (connected and no cycles).
2. G has $(n-1)$ edges and no cycles.
3. G has $(n-1)$ edges and is connected.

Proof:

1. $(1) \Rightarrow(2)$: Induction on n, using Theorem 0.2 .
2. $(2) \Rightarrow(3)$: Let T be the number of connected components. If component i has v_{i} vertices, then it has $\left(v_{i}-1\right)$ edges, thus the whole graph has $(n-T)$ edges. But the whole tree has $(n-1)$ edges, so $T=1$.
3. $(3) \Rightarrow(1)$: Suppose it has a cycle, then we could remove an edge without disconnecting the graph. Repeat until there are no cycles, but then there should be $(n-1)$ edges. Contradiction.
