Chapter 6.4
Wednesday, Week 5

Warmup

What is the combinatorial reasoning? $\binom{n}{k}=\binom{n}{n-k}$
Evaluate:

1. $\binom{4}{3}$
2. $\binom{6}{3}$
3. $\binom{17}{0}$
4. $\binom{12}{2}$
5. $\binom{6}{8}$
6. $\binom{895}{895}$

IT'S PASCAL'S TRIANGLE EVERYONE!!! FILL IN THE NEXT TWO ROWS OF PASCAL'S TRIANGLE!!

					1			
			1		1			
		1		2		1		
	1		3		3		1	
1		4		6		4		1

(More) Combinatorial Proofs

You have $n+1$ friends and one of them is Freddy. How many ways to choose k friends for a Frisbee team if one of them is Freddy?

How many ways to choose k friends for your Frisbee team if none of them are Freddy?

The Binomial Theorem

Recall: According to the Binomial Theorem, what is the x^{2} coefficient in $(1+x)^{4}$?

What is $(1-1)^{5}$?

The Multinomial Theorem

What are the $x y^{2}$ and $x y z$ coefficients of $(x+y+z)^{3}$?

How many distinct arrangements of the letters in MISSISSIPPI?

