Fkdswhu 5.4
Wkxuvghb, Zhhn 4

Warmup

Compute:

1. $18+9(\bmod 26)$
2. $22+21(\bmod 26)$
3. $24 \cdot 5-7(\bmod 26)$

For which of these functions $f: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26}$ does an inverse function exist? Give the inverse if it exists.

1. $f(x)=x$
2. $f(x)=x+3$
3. $f(x)=3 x$
4. $f(x)=4 x$
5. $f(x)=13 x+7$
6. $f(x)=7 x+13$

RSA

The actors involved in the process:

1. Alice, who has the public key and the only one who knows the private key.
2. Bob wants to send a message to Alice.
3. Eve is the eavesdropper, who wants to get hold of Bob's message.

The relevant numbers used in the encryption/decryption process:

1. (n, e) : Alice's RSA public key.
2. m, the number ("message") that Bob wants to encrypt and send to Alice.
3. $n=p q$: the factorization of n, which only Alice knows. p and q are large prime numbers (say, 300 digits).
4. $\varphi(n)=(p-1)(q-1)$, the number of elements relatively prime to n. In other words, the number of elements in the group \mathbb{Z}_{n}^{\times}.
5. e is the exponent of encryption, a number such that $\operatorname{gcd}(e,(p-1)(q-1))=1$. (So, $e \in \mathbb{Z}_{n}^{\times}$.)
6. d is the exponent of decryption, a number such that $d e \equiv 1(\bmod (p-1)(q-1))$.

The process:

1. Bob takes his number m and computes $m^{e}(\bmod n)$. He then sends this new number to Alice.
2. Alice then raises this number to the exponent d, getting $m^{e d}(\bmod n)$.
3. Since $d e \equiv 1(\bmod (p-1)(q-1))$, $d e=1+k(p-1)(q-1)$ for some integer k. This leads to the congruences

$$
\begin{aligned}
m^{d e} \equiv m^{1+k(p-1)(q-1)} \equiv\left(m^{(p-1)}\right)^{k(q-1)} \cdot m \equiv m \quad(\bmod p) \\
m^{d e} \equiv m^{1+k(p-1)(q-1)} \equiv\left(m^{(q-1)}\right)^{k(p-1)} \cdot m \equiv m \quad(\bmod q)
\end{aligned}
$$

at which point the Chinese Remainder Theorem implies $m \equiv 1(\bmod p q)$, and so $m \equiv 1(\bmod n)$. Alternatively, we could show this directly by saying

$$
\left(m^{(p-1)(q-1)}\right)^{k} \cdot m \equiv\left(m^{\varphi(n)}\right)^{k} \cdot m \equiv m \quad(\bmod n)
$$

Either way, Alice now has Bob's message successfully decrypted.
One key to security: Even if Eve gets access to $c=m^{e}$ and manages by other means to learn m, then she would still have to solve $c^{x} \equiv m(\bmod n)$, which is hard.

Chosen Ciphertext Attack

Eve has $c=m^{e}$, and she wants m. Pick some random number r such that $r<n$. Then compute

$$
\begin{aligned}
x & =r^{e} \quad \bmod n \\
y & =x c \quad \bmod n \\
t & =r^{-1} \quad \bmod n
\end{aligned}
$$

Then sends y to Alice and asks her to put her digital signature on it. Alice agrees, returning $u=y^{d}(\bmod n)$. Then Even computes

$$
t u \quad \bmod n=r^{-1} y^{d} \quad \bmod n=r^{-1} x^{d} c^{d} \quad \bmod n=r^{-1}\left(r^{e}\right)^{d} m \quad \bmod n=m
$$

Eve now has m. Lesson: do not use your private key to sign mysterious messages.

