Chapter 5.2
Tuesday, Week 4

Warmup

13 is a fluffy number. If a natural number n is fluffy then $n+1$ is also fluffy. Which numbers must be fluffy?

10 is not a fluffy number. Which numbers cannot be fluffy?

Let a_{n} be a sequence such that $a_{n+1} \geq a_{n}$ for all n. If $a_{0}=1$, prove that $a_{n} \geq 1$ for all $n \in \mathbb{N}$.

The Well-Ordering Property

Let S and T be sets with $S \subset \mathbb{N}$ and $T \subset \mathbb{Z}$. Which of these statements must be true?

1. S has a largest element.
2. T has a largest element.
3. S has a smallest element.
4. T has a smallest element.

Find a subset of the interval $[0,1]$ with no largest or smallest element.

Strong Induction

In a game of football you can score 6,7 , or 8 points for a touchdown and 3 points for a field goal. What scores can you get with only touchdowns and field goals?

Suppose that you can only score 6 or 7 points with a touchdown (because you never try for the 2-point conversion). What scores can you get now?

The Primes

What is $\operatorname{gcd}(a, a b c+1)$?

Take $a, b, c \geq 2$ with $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$. Can a, b, and c share any prime factors?

What is $\operatorname{gcd}(k, n!+1)$ if $1 \leq k \leq n$?

