Chapter 4.4
Friday, Week 3

Warmup

How many solutions?

1. $5 n \equiv 1(\bmod 24)$
2. $5 n \equiv 3(\bmod 24)$
3. $9 n \equiv 1(\bmod 24)$
4. $9 n \equiv 3(\bmod 24)$
5. $n^{2} \equiv 1(\bmod 19)$
6. $n^{2} \equiv 2(\bmod 5)$
7. $n^{2} \equiv 1(\bmod 8)$

How many solutions?

1. $x \equiv 2(\bmod 5)$ and $x \equiv 9(\bmod 10)$
2. $x \equiv 2(\bmod 5)$ and $x \equiv 9(\bmod 11)$

Recall: What is a bijection?

If $f(x)=5 x$, draw a diagram illustrating $f: \mathbb{Z}_{7} \rightarrow \mathbb{Z}_{7}$

Look at the numbers in \mathbb{Z}_{11} and partner every number with its multiplicative inverse. Which numbers have no partners? Which numbers have multiple partners?

