Monday, Week 3

Warmup

Evaluate:

1. $5!=$
2. The sum of all primes less than $15=$
3. $1+2+3+\ldots+7=$
4. $1+2+4+8+\ldots+64=$
5. $1+\pi+(-3)+6.6+\ldots+41=$

Sums and Products

How many circles?

1. What is $\sum_{i=1}^{3} \sum_{j=1}^{2} i+j$? What about $\sum_{j=1}^{2} \sum_{i=1}^{3} i+j$?
2. What is $\prod_{i=1}^{2} \prod_{j=1}^{2} i+j$? What about $\prod_{j=1}^{2} \prod_{i=1}^{2} i+j$?
3. What is $\sum_{i=1}^{2} \prod_{j=1}^{2} i+j$? What about $\prod_{j=1}^{2} \sum_{i=1}^{2} i+j$?

Big-Oh Notation

Which of these statements seems most correct?

1. When n is large, $n^{2}+\ln (n)+2^{n}$ is approximately n^{2}.
2. When n is large, $n^{2}+\ln (n)+2^{n}$ is approximately $\ln (n)$.
3. When n is large, $n^{2}+\ln (n)+2^{n}$ is approximately 2^{n}.

Suppose it takes L time to add two n-digit numbers. About long does it take to add two numbers with twice as many digits?

Suppose it takes M time to multiply two n-digit numbers. About long does it take to multiply two numbers with twice as many digits?

L'Hospital's Rule

What is L'Hospital's Rule? If $f(x), g(x)$ are real-valued functions where $\lim _{x \rightarrow \infty} f^{\prime}(x)$ and $\lim _{x \rightarrow \infty} g^{\prime}(x)$ exist, then $\lim _{x \rightarrow \infty} f(x) / g(x)=$

Show that $\ln (x)$ is $O\left(x^{c}\right)$ for any $c>0$.

