Monday, Week 3

Warmup

Evaluate:

- 1. 5! =
- 2. The sum of all primes less than 15 =
- 3. $1 + 2 + 3 + \ldots + 7 =$
- $4. 1 + 2 + 4 + 8 + \ldots + 64 =$
- 5. $1 + \pi + (-3) + 6.6 + \ldots + 41 =$

Sums and Products

How many circles?

1. What is
$$\sum_{i=1}^{3} \sum_{j=1}^{2} i + j$$
? What about $\sum_{j=1}^{2} \sum_{i=1}^{3} i + j$?

2. What is
$$\prod_{i=1}^{2} \prod_{j=1}^{2} i + j$$
? What about $\prod_{j=1}^{2} \prod_{i=1}^{2} i + j$?

3. What is
$$\sum_{i=1}^{2} \prod_{j=1}^{2} i + j$$
? What about $\prod_{j=1}^{2} \sum_{i=1}^{2} i + j$?

Big-Oh Notation

Which of these statements seems most correct?

- 1. When n is large, $n^2 + \ln(n) + 2^n$ is approximately n^2 .
- 2. When n is large, $n^2 + \ln(n) + 2^n$ is approximately $\ln(n)$.
- 3. When n is large, $n^2 + \ln(n) + 2^n$ is approximately 2^n .

Suppose it takes L time to add two n-digit numbers. About long does it take to add two numbers with twice as many digits?

Suppose it takes M time to multiply two n-digit numbers. About long does it take to multiply two numbers with twice as many digits?

L'Hospital's Rule

What is L'Hospital's Rule? If f(x), g(x) are real-valued functions where $\lim_{x\to\infty} f'(x)$ and $\lim_{x\to\infty} g'(x)$ exist, then $\lim_{x\to\infty} f(x)/g(x) =$

Show that ln(x) is $O(x^c)$ for any c > 0.