Wednesday, Week 3

Delta-Epsilon Special

Warmup

Find sequences $\{a_n\}$ that satisfy each of the following conditions:

- 1. $\{a_n\}$ is bounded, but $\lim_{n\to\infty} a_n$ does not exist.
- 2. $\lim_{n\to\infty} a_n = 0$, but a_n is never equal to zero.
- 3. $a_n = 0$ infinitely often, but $\{a_n\}$ is not bounded. (Try defining the function separately for even and odd numbers.)

Sequences Described by One Quantifier

- All-zero sequence: $(\forall n)(a_n = 0)$
- "Tiny" sequence: $(\forall n)(|a_n| < 1)$
- "Sometimes zero" sequence: $(\exists n)(a_n = 0)$

Sequences Described by Two Quantifiers

- Constant sequence: $(\exists c)(\forall n)(a_n = c)$
- Bounded sequence: $(\exists M)(\forall n)(|a_n| < M)$
- "Eventually tiny" sequence: $(\exists N)(\forall n > N)(|a_n| < 1)$

• "Eventually zero" sequence: $(\exists N)(\forall n > N)(a_n = 0)$

Three Quantifiers

•
$$\lim_{n\to\infty} a_n = 0$$
: $(\forall \epsilon > 0)(\exists N)(\forall n > N)(|a_n| < \epsilon)$

• $\lim_{n\to\infty} a_n \neq 0$: $(\exists \epsilon < 0)(\forall N)(\exists n > N)(|a_n| \geq \epsilon)$

Proof List

- 1. The sum of two all-zero sequences is all-zero.
- 2. The product of two "tiny" sequences is tiny.
- 3. The sum of two tiny sequences is not necessarily tiny.
- 4. The product of two "sometimes zero" sequences is sometimes zero.
- 5. The sum and product of two constant/bounded sequences is constant/bounded.
- 6. All constant sequences are bounded.
- 7. Tiny sequences are not necessarily constant.
- 8. The product of two eventually tiny sequences is eventually tiny.
- 9. The sum and product of two eventually zero sequences are eventually zero.
- 10. The sum of an eventually tiny sequence and an eventually zero sequence is eventually tiny.
- 11. Eventually tiny and eventually zero sequences are both bounded.
- 12. If $\{a_n\}$ is the all-zero sequence then $\lim_{n\to\infty} a_n = 0$.
- 13. If $\{a_n\}$ is eventually zero then $\lim_{n\to\infty} a_n = 0$.
- 14. If $\lim_{n\to\infty} a_n = 0$ and $\lim_{n\to\infty} b_n = 0$ then $\lim_{n\to\infty} (a_n + b_n) = 0$.
- 15. If $\lim_{n\to\infty} a_n = 0$ and $\{b_n\}$ is bounded then $\lim_{n\to\infty} (a_n b_n) = 0$.