Friday, Week 1

Chapters 1.4-1.5

Warmup

Let $A = \{1, 2, 3\}, B = \{3, 4\}, U = \mathbb{Z}.$

- 1. What is $A \cup B$? $A \cap B$? A B? $A \times B$?
- 2. How many elements are in $\mathcal{P}(A)$? $\mathcal{P}(B)$?
- 3. True or False: $\emptyset \subset A$.
- 4. True or False: $\emptyset \in A$.

Illustrate with a Venn diagram, and prove: If $A \subset B$ and $B \subset C$, then $A \subset C$.

Describe using set builder notation:

- 1. The unit circle in \mathbb{R}^2 .
- 2. The line y = 2x in \mathbb{R}^2 .

Predicate Logic

Let P(x) stand for the statement "x > 3." What is P(2)? P(3)? P(4)?

Let D(x, y) stand for the statement "x defeats y in a game of rock-paper-scissors." What is D(paper, rock)? D(rock, paper)? D(paper, paper)?

Quantifiers

Let H be the set of all humans, let e be Albert Einstein, let S(x, y) be the statement "x is at least as smart as y." Say the following with quantifier notation:

- 1. Albert Einstein is the smartest human.
- 2. There is a human who is smarter than Albert Einstein.

Uniqueness

Given: "There is only one superhero who can save us now!" H is the set of all superheroes. S(x) means "x can save us."

- 1. Suppose S(Superman) is true. What is S(Aquaman)? S(Ant Man)?
- 2. Quantifier notation?