Thursday, Week 1

Chapters 1.7-1.8

Warmup

Theorem 0.1 (Questionable Theorem) If $x+y=10$, then $x \neq 3$ and $y \neq 8$.
Which of these are counterexamples?

1. When $x=3$ and $y=8, x+y=11 \neq 10$.
2. When $x=3$ and $y=7, x+y=10$.
3. When $x=3$ and $y=6, x+y=9$.
4. When $x=4$ and $y=6, x+y=10$.

Prove: Suppose n is an integer. If $3 n$ is odd, then n is odd.

Proof by Cases

Define: $|x|=\left\{\begin{array}{ll}x & x \geq 0 \\ -x & x<0\end{array}\right.$. Prove that $|x| \geq 0$ for all x. What are the two cases?

Biconditionals and Backward Reasoning

Draw a diagram showing the relations: If it is Sunday then I am at the mall. If I am at the mall then I am shopping. If I am shopping then I have the day off work. If I have the day off work then it is Sunday.

Prove: I am at the mall if and only if I have the day off work.

It's a Trick Question

What's wrong with this proof?
Theorem 0.2 (Tricky Theorem) If $\sqrt{2 x^{2}-1}=x$, then $x=1$ or $x=-1$.
Proof:

$$
\begin{aligned}
\sqrt{2 x^{2}-1} & =x \\
2 x^{2}-1 & =x^{2} \\
x^{2}-1 & =0 \\
(x-1)(x+1) & =0 \\
x-1 & =0 \text { or } x+1=0 \\
x & =1 \text { or } x=-1
\end{aligned}
$$

For which of these claims does the converse hold?

1. If $a=b$ then $a+c=b+c$.
2. If $a=b$ then $a c=b c$.
3. If $a=b$ then $a^{2}=b^{2}$.
4. Suppose $c \neq 0$. If $a=b$ then $a c=b c$.
5. If $a^{2}=4$ then $a=2$ or $a=-2$.
6. If $a>0$ then $a^{2}>0$.
7. If $a>0$ then $1 / a>0$.
8. Suppose $a, b \geq 0$. If $a>b$ then $a^{2}>b^{2}$.
