Wednesday, Week 1

Chapters 1.6-1.7

Warmup

- 1. Which of the following arguments are logically valid?
 - (a) If we have matches, we can start a fire. We have matches. Therefore, we can start a fire.
 - (b) If I did not have a liver, I would be dead. I am clearly not dead. Therefore, I have a liver.
 - (c) They close the beach whenever sharks are spotted. They closed the beach. Therefore, sharks were spotted.
 - (d) If I do every problem in the book I will pass the class. I will not do every problem in the book. Therefore, I will not pass the class.
 - (e) If it rains then the Cubs will lose. If it does not rain then the Cubs will lose. Therefore, the Cubs will lose.
 - (f) Either the Cubs or the Sox (or both) lost today. The Sox lost today. Therefore, the Cubs did not lose
 - (g) Either the Cubs or the Sox (or both) lost today. The Sox won today. Thererfore, the Cubs lost today.
- 2. Show that $p \Rightarrow q$ and $(\neg p) \lor q$ are equivalent.
- 3. Negate!
 - (a) Today is either Thursday or Friday.
 - (b) Albert Einstein won a Nobel Prize and two Oscars.

Counterexamples

Find counterexamples to the following claims:

- 1. Everybody named George is a politician.
- 2. If n is prime, then 2n + 1 is prime.
- 3. If n is prime and odd, then either n+2 or n+4 is prime.
- 4. For any integer n, n+3 is even and n+8 is also even.
- 5. If a + b = 0 then a = 0 or b = 0.
- 6. $a \cdot b$ is zero only if a = 0 and b = 0.
- 7. For a number n to be divisible by 12 it is necessary for n to be divisible by 8.
- 8. For a number n to be divisible by 12 it is sufficient for n to be divisible by 8.

Axioms and Proofs

Which statements are "obvious" and which ones need proving?

1. If
$$a \cdot b = 0$$
 then $a = 0$ or $b = 0$.

2. For real numbers
$$a$$
, $a + 0 = a$.

3. For real numbers
$$a, a \cdot 0 = 0$$
.

4. If
$$a \le b$$
 and $a \ge b$ then $a = b$.

5. If
$$a > 0$$
 and $b > 0$ then $ab > 0$.

7. $1 \neq 0$.

9. If
$$a > b$$
 then $a^2 > b^2$.

10. If
$$a = b$$
 and $b = c$ then $a = c$.

6. The sum of two odd numbers is even.

What's wrong with this proof? Find a counterexample.

Theorem 0.1 (Incorrect Theorem) Suppose that x and y are real numbers and $x \neq 3$. If $x^2y = 9y$ then y = 0.

Proof:

1. If
$$x^2y = 9y$$
, then $x^2y - 9y = 0$.

2. If
$$x^2y - 9y = 0$$
, then $(x^2 - 9)y = 0$.

3. If
$$(x^2 - 9)y = 0$$
, then $x^2 - 9 = 0$ or $y = 0$.

4. Since
$$x \neq 3$$
, $x^2 - 9 \neq 0$.

5. Since
$$(x^2 - 9 = 0 \text{ or } y = 0)$$
 but $x^2 - 9 \neq 0$, we conclude that $y = 0$.

Contraposition

State the contrapositives. Which ones sound easier to prove?

- 1. If n^2 is even then n is even.
- 2. If $a \cdot b = 0$ then a = 0 or b = 0.
- 3. If $a \leq b$ and $a \geq b$ then a = b.
- 4. If $ab \leq 0$ then $a \leq 0$ or $b \leq 0$.
- 5. If $a^2 2a \neq 0$ then $a \neq 2$.