14.8-15.1: Optimization, Double Integrals

Wednesday, March 16

Optimization

Find the extreme values of $f(x, y):=x^{2}+y^{2}+4 x-4 y$ on the region $x^{2}+y^{2} \leq 9$. Sketch the region and a contour plot of f.

You are in charge of buying advertising time for a senatorial campaign. Your very scientific models predict that t hours of advertising time in district A will win you $100 \sqrt{t}$ new voters and t hours in district B will win you $400 \sqrt{t}$ new voters. If the networks in A charge 10 dollars per hour and the networks in B charge 20 dollars per hour and you have 90 dollars to spend, how should you divide your money?

Optimization with Two Constraints

Find the maximum and minimum values of $f(x, y, z)=x+y+z$ given the constraints $x^{2}+y^{2}+z^{2}=1, x=2 y$.

Double Integrals!

Sketch the solid whose volume is given by the integral $\int_{0}^{1} \int_{0}^{1}(4-x-2 y) d x d y$ and find the volume.

Find the integral $\iint_{R} y e^{-x y} d A$ on the region $R=[0,2] \times[0,3]$.

