14.8-15.1: Optimization, Double Integrals Wednesday, March 16

Optimization

Find the extreme values of $f(x, y) := x^2 + y^2 + 4x - 4y$ on the region $x^2 + y^2 \le 9$. Sketch the region and a contour plot of f.

You are in charge of buying advertising time for a senatorial campaign. Your very scientific models predict that t hours of advertising time in district A will win you $100\sqrt{t}$ new voters and t hours in district B will win you $400\sqrt{t}$ new voters. If the networks in A charge 10 dollars per hour and the networks in B charge 20 dollars per hour and you have 90 dollars to spend, how should you divide your money?

Optimization with Two Constraints

Find the maximum and minimum values of f(x, y, z) = x + y + z given the constraints $x^2 + y^2 + z^2 = 1, x = 2y$.

Double Integrals!

Sketch the solid whose volume is given by the integral $\int_0^1 \int_0^1 (4 - x - 2y) dx dy$ and find the volume.

Find the integral $\iint_R y e^{-xy} dA$ on the region $R = [0, 2] \times [0, 3]$.