14.8-15.1: Optimization, Double Integrals

Wednesday, March 16

Optimization

Find the extreme values of $f(x, y):=x^{2}+y^{2}+4 x-4 y$ on the region $x^{2}+y^{2} \leq 9$. Sketch the region and a contour plot of f.
$\nabla f(x, y)=\langle 2 x+4,2 y-4\rangle$, so setting the gradient to zero shows that the only critical point is at $(-2,2)$ and the second derivative test shows that this point is a local (therefore the global) min.
Then the maximum must lie on the curve $x^{2}+y^{2}=9$, so use Lagrange multipliers: $\langle 2 x+4,2 y-4\rangle=$ $\lambda\rangle 2 x, 2 y\rangle$ and $x^{2}+y^{2}=9$. Combining the first two equations gives $y=-x$, so critical points occur at $(x, y)=(\pm 3 / 2, \mp 3 / 2)$. The maximum is at $(3 / 2,-3 / 2)$ and the other point is just a minimum on the boundary, not on the whole region.
The region is a disk and the contours are perfect circles, so our answer fits with the intuitive answer that the maximum on the disk occurs at the point farthest from the global min $(-2,2)$.

You are in charge of buying advertising time for a senatorial campaign. Your very scientific models predict that t hours of advertising time in district A will win you $100 \sqrt{t}$ new voters and t hours in district B will win you $400 \sqrt{t}$ new voters. If the networks in A charge 10 dollars per hour and the networks in B charge 20 dollars per hour and you have 90 dollars to spend, how should you divide your money?

If a is the money devoted to district A and b is the amount spent in district B then you want to maximize $100 \sqrt{a}+400 \sqrt{b}$ under the contstraint $10 a+20 b=90$ (assuming you spend all of the money). Using Lagrange multipliers gives the constraints $50 / \sqrt{a}=10 \lambda, 200 / \sqrt{b}=20 \lambda$, so $100 / \sqrt{a}=200 / \sqrt{b}$ and therefore $b=4 a$. Combining this with the constraint $a+2 b=9$ gives $a=1, b=4$, so you should spend 10 dollars in district A and 80 in district B.

Optimization with Two Constraints

Find the maximum and minimum values of $f(x, y, z)=x+y+z$ given the constraints $x^{2}+y^{2}+z^{2}=1, x=2 y$. $\nabla f(x, y, z)=\langle 1,1,1\rangle$, so setting $g(x, y, z)=x^{2}+y^{2}+z^{2}$ and $h(x, y, z)=x-2 y$ and using Lagrange multipliers gives

$$
\begin{aligned}
\langle 1,1,1\rangle & =\lambda\langle x, y, z\rangle+\mu\langle 1,-2,0\rangle \\
1 & =\lambda x+\mu \\
1 & =\lambda y-2 \mu \\
1 & =\lambda z \\
x^{2}+y^{2}+z^{2} & =1 \\
x & =2 y .
\end{aligned}
$$

Eliminating μ from the first two equations gives $3=\lambda y+2 \lambda x$, and substituting $x=2 y$ gives $\lambda y=3 / 5$. Since $\lambda z=1$, it follows that $y=3 z / 5$, and so $x=6 z / 5$. Therefore $\left((6 / 5)^{2}+(3 / 5)^{2}+1\right) z^{2}=1$, and $z= \pm \sqrt{5 / 14}$, and x and y follow. The point where $x, y, z>0$ is the maximum and the one where $x, y, z<0$ is the minimum.

Double Integrals!

Sketch the solid whose volume is given by the integral $\int_{0}^{1} \int_{0}^{1}(4-x-2 y) d x d y$ and find the volume. $\int_{0}^{1} \int_{0}^{1}(4-2 x-2 y) d x d y=\int_{0}^{1} 3-2 y d y=2$.

Find the integral $\iint_{R} y e^{-x y} d A$ on the region $R=[0,2] \times[0,3]$.
$\iint_{R} y e^{-x y} d A=\int_{y=0}^{3} \int_{x=0}^{2} y e^{-x y} d x d y=\int_{y=0}^{3}\left(-e^{-x y}\right)\left|0^{2} d y=\int_{0}^{3} 1-e^{-2 y} d y=y+\frac{1}{2} e^{-2 y}\right| 0^{3}=3+\left(e^{-6}-\right.$ 1) $/ 2=5 / 2+e^{-6} / 2$.

