13.4,14.1: Functions of Multiple Variables
 Wednesday, March 2

Partial Derivatives, Linear Approximation

Find all of the second partial derivatives of the following functions. In particular, verify that $f_{x y}=f_{y x}$.

1. $f(x, y)=\cos (x y)+x e^{y}$
2. $f(x, y)=\arctan (y / x)$
3. $f(x, y)=\sqrt{x^{2}+y^{2}}$

Find a linear approximation to the function $f(x, y, z)=3 x y+x z+y e^{x^{2} z}$ at $(0,1,0)$ and use it to approximate $f(0.1,0.9,0.2)$.

Even More Projectile Motion

A cannoneer wishes to hit a target on the ground, and to do so fires a cannonball with velocity v_{0} and at angle of elevation θ. Recall that the distance the cannonball travels through the air is given by $d\left(v_{0}, \theta\right)=\frac{1}{g} v_{0}^{2} \sin 2 \theta$.

1. Make (rough) sketches of the graph of d for $0 \leq v \leq \sqrt{g}$ and $0 \leq \theta \leq \pi / 2$.
2. Sketch a contour plot of d. If the target is a distance of $1 / 2$ (units) from the cannoneer, sketch the curve of values $\left(v_{0}, \theta\right)$ that hit the target.
3. The cannoneer does not have perfect accuracy and so will have some small error in both v_{0} and θ. Use a linearization of $d\left(v_{0}, \theta\right)$ to decide: is it a better idea (accuracywise) to fire the ball at a high angle, a low angle, or a 45-degree angle? Explain.

Best Fit Line

We would like to approximate a set of data points with a linear function. The picture below shows the five points $(-3,-1),(0,1),(-1,0),(1,0)$, and $(2,1)$ approximated by the function $y=x$.

1. We would like to find the values a and b that give the "best fit line" in the form $y=a x+b$. How do you think the current values $a=1$ and $b=0$ should be adjusted?
2. We can measure the error of the function by summing the squared distances of our predicted values from the actual y-values of the datat points: so $E(a, b)=\sum_{i}\left(a x_{i}+b-y_{i}\right)^{2}$. In our case, the error function for these five data points is $E(a, b)=15 a^{2}+5 b^{2}+3-2 a b-2 b-10 a$. Find E_{a} and E_{b}.
3. Use your previous answer: how should a and b be altered to improve the fit of the line?
