13.4,14.1: Functions of Multiple Variables

Wednesday, March 2

Partial Derivatives, Linear Approximation

Find all of the second partial derivatives of the following functions. In particular, verify that $f_{x y}=f_{y x}$.

1. $f(x, y)=\cos (x y)+x e^{y}:$

$$
\begin{aligned}
f_{x} & =-y \sin (x y)+e^{y} \\
f_{y} & =-x \sin (x y)+x e^{y} \\
f_{x x} & =-y^{2} \cos (x y) \\
f_{x y} & =-\sin (x y)-x y \cos (x y)+e^{y} \\
f_{y x} & =-\sin (x y)-x y \cos (x y)+e^{y} \\
f_{y y} & =-x^{2} \cos (x y)+x e^{y}
\end{aligned}
$$

2. $f(x, y)=\arctan (y / x)$: Just stick with the first partial derivatives since the second partial derivatives are annoying:

$$
\begin{aligned}
f_{x} & =\frac{1}{1+(y / x)^{2}} \frac{-y}{x^{2}}=\frac{-y}{x^{2}+y^{2}} \\
f_{y} & =\frac{1 / x}{1+(y / x)^{2}}=\frac{x}{x^{2}+y^{2}} .
\end{aligned}
$$

There's something going on here related to circles... note that $\left(f_{x}\right)^{2}=\left(f_{y}\right)^{2}=1 /\left(x^{2}+y^{2}\right)$ for all x and y.
3. $f(x, y)=\sqrt{x^{2}+y^{2}}$

$$
\begin{aligned}
& f_{x}=\frac{x}{\sqrt{x^{2}+y^{2}}} \\
& f_{y}=\frac{y}{\sqrt{x^{2}+y^{2}}} .
\end{aligned}
$$

Circles again...this time, $\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}=1$.
Find a linear approximation to the function $f(x, y, z)=3 x y+x z+y e^{x^{2} z}$ at $(0,1,0)$ and use it to approximate $f(0.1,0.9,0.2)$.
First find the partial derivatives:

$$
\begin{aligned}
& f_{x}(0,1,0)=3 y+z+2 y z e^{x^{2} z}=3 \\
& f_{y}(0,1,0)=3 x+e^{x^{2} z}=1 \\
& f_{z}(0,1,0)=x+x^{2} y e^{x^{2} z}=0 .
\end{aligned}
$$

Therefore, $f(.1, .9, .2) \approx f(0,1,0)+3(.1)+1(-.1)+0(.2)=1.2$.

Even More Projectile Motion

A cannoneer wishes to hit a target on the ground, and to do so fires a cannonball with velocity v_{0} and at angle of elevation θ. Recall that the distance the cannonball travels through the air is given by $d\left(v_{0}, \theta\right)=\frac{1}{g} v_{0}^{2} \sin 2 \theta$.

1. Make (rough) sketches of the graph of d for $0 \leq v \leq \sqrt{g}$ and $0 \leq \theta \leq \pi / 2$.

Three edges of the plot will be zero (if $\theta=0$ or $\theta=\pi / 2$ or $v_{0}=0$, the object will hit the ground immediately), and the fourth will be half of a sine wave with its maximum at $\theta=\pi / 4$. For any fixed θ, the function will increase quadratically with respect to v_{0}.
2. Sketch a contour plot of d. If the target is a distance of $1 / 2$ (units) from the cannoneer, sketch the curve of values $\left(v_{0}, \theta\right)$ that hit the target.
To hit a particular distance k, we could need $v_{0}^{2} \sin 2 \theta=g k$, or $v_{0}^{2}=g k \csc 2 \theta$. Roughly, this means that the closer the angle is to 0 or $\pi / 2$, the greater the velocity will need to be to have the cannonball travel the same distance. When $\theta=\pi / 4$, the required velocity is at a minimum.
3. The cannoneer does not have perfect accuracy and so will have some small error in both v_{0} and θ. Use a linearization of $d\left(v_{0}, \theta\right)$ to decide: is it a better idea (accuracywise) to fire the ball at a high angle, a low angle, or a 45-degree angle? Explain.

The smaller the partial derivatives, the more stable the function is when the inputs are perturbed. $d_{\theta}=\frac{2}{g} v_{0}^{2} \cos 2 \theta$, which is at a maximum when $\theta=0$ or $\pi / 2$ and is zero when $\theta=\pi / 4$ (45 degrees). $d_{v_{0}}=\frac{2}{g} v_{0} \sin 2 \theta$, so d is more stable the smaller the velocity is (with respect to absolute changes rather than changes proportional to v_{0}).
When the ball is fired at 45 degrees the required velocity is at a minimum, so with respect to both angle and velocity the best-case scenario is to fire at 45 degrees.

Best Fit Line

We would like to approximate a set of data points with a linear function. The picture below shows the five points $(-3,-1),(0,1),(-1,0),(1,0)$, and $(2,1)$ approximated by the function $y=x$.

1. We would like to find the values a and b that give the "best fit line" in the form $y=a x+b$. How do you think the current values $a=1$ and $b=0$ should be adjusted?
Maybe a should be smaller and b larger, I guess?
2. We can measure the error of the function by summing the squared distances of our predicted values from the actual y -values of the data points: so $E(a, b)=\sum_{i}\left(a x_{i}+b-y_{i}\right)^{2}$. In our case, the error function for these five data points is $E(a, b)=15 a^{2}+5 b^{2}+3-2 a b-2 b-10 a$. Find E_{a} and E_{b}.
$E_{a}=30 a-2 b-10$ and $E_{b}=10 b-2 a-2$.
3. Use your previous answer: how should a and b be altered to improve the fit of the line?

At the point $(a, b)=(1,0)$ (the current line), $E_{a}=20$ and $E_{b}=-22$. This means that (with our linear approximation), the error will go down when a decreases and b increases.
If we want to find the optimal pair (a, b), we have to solve the system

$$
\begin{aligned}
30 a-2 b & =10 \\
-2 a+10 b & =2,
\end{aligned}
$$

which has $a=13 / 37, b=10 / 37$ as the unique solution. The best fit line is therefore $y=\frac{13}{37} x+\frac{10}{37}$.

