13.3: Arc Length and Curvature
 Wednesday, February 17

Relevant Formulas

- $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$
- $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}$
- $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$
- $\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$

Sketches

Sketch:

1. $x^{2}-2 x+y^{2}=-z^{2}$
2. $(x+y)^{2}+z^{2}=1$
3. The intersection of the unit sphere and the surface defined by $(2 x)^{2}+(2 y)^{2}=1$
4. $\mathbf{r}(t)=\langle\sin t, \cos t, t\rangle$
5. For the previous problem, pick a point and sketch $\mathbf{T}(t), \mathbf{N}(t)$, and $\mathbf{B}(t)$.

Arc Length and Curvature

1. Given the curve $\mathbf{r}(t)=\langle 5-t, 4 t-3,3 t\rangle$, find the point 4 units along the curve from the point $(4,1,3)$ as t increases.
2. Find formulas for the tangent and normal vectors and the curvature of the curve $\mathbf{r}(t)=\left\langle t, \frac{1}{2} t^{2}, t^{2}\right\rangle$.
3. Find the tangent, normal, and binormal vectors for the curve $\mathbf{r}(t)=\left\langle t^{2}, \frac{2}{3} t^{3}, t\right\rangle$ at the point $(1,2 / 3,1)$.

Miscellany

A particle moves around the surface of a sphere. Show that its velocity vector and the vector from the center of the sphere to the particle's position are orthogonal at all times.

