13.3: Arc Length and Curvature
 Wednesday, February 17

Relevant Formulas

- $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$
- $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}$
- $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$
- $\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$

Sketches

Sketch:

1. $x^{2}-2 x+y^{2}=-z^{2}$: It's a sphere of radius 1 centered at $(1,0,0)$.
2. $(x+y)^{2}+z^{2}=1$: A cylinder of radius 1 with axis of symmetry $x+y=0, z=0$.
3. The intersection of the unit sphere and the surface defined by $(2 x)^{2}+(2 y)^{2}=1$: Two circles of radius $1 / 2$ at $z= \pm \sqrt{3} / 2$.
4. $\mathbf{r}(t)=\langle\sin t, \cos t, t\rangle$: A helix spiraling upward and clockwise around a cylinder.
5. For the previous problem, pick a point and sketch $\mathbf{T}(t), \mathbf{N}(t)$, and $\mathbf{B}(t) . \mathbf{T}(t)$ is tangent to the cylinder, $\mathbf{N}(t)$ points inward, and $\mathbf{B}(t)$ points downward.

Arc Length and Curvature

1. Given the curve $\mathbf{r}(t)=\langle 5-t, 4 t-3,3 t\rangle$, find the point 4 units along the curve from the point $(4,1,3)$ as t increases.
The position as a function of distance traveled is $\mathbf{r}(t(s))=(4-s / \sqrt{26}, 4 s / \sqrt{26}, 3+3 s \sqrt{26})$, so plug in $s=4$ to get the point 4 units along the curve.
2. Find formulas for the tangent and normal vectors and the curvature of the curve $\mathbf{r}(t)=\left\langle t, \frac{1}{2} t^{2}, t^{2}\right\rangle$.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle 1, t, 2 t\rangle \\
\mathbf{T}(t) & =\langle 1, t, 2 t\rangle / \sqrt{1+5 t^{2}} \\
\mathbf{T}^{\prime}(t) & =\left\langle-5 t\left(1+5 t^{2}\right)^{-3 / 2},\left(1+5 t^{2}\right)^{-1 / 2}-5 t^{2}\left(1+5 t^{2}\right)^{-3 / 2}, 2\left(1+5 t^{2}\right)^{-1 / 2}-10 t^{2}\left(1+5 t^{2}\right)^{-3 / 2}\right\rangle \\
& =\left(1+5 t^{2}\right)^{-3 / 2}\langle-5 t, 1,2\rangle \\
\mathbf{N}(t) & =\frac{\langle-5 t, 1,2\rangle}{\sqrt{5+25 t^{2}}} \\
\kappa(t) & =\frac{\mid \mathbf{T}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|} \\
& =\frac{\sqrt{5}}{\left(1+5 t^{2}\right)^{3 / 2}} .
\end{aligned}
$$

A mistake in the answer here is entirely possible, but the rough idea is that the particle follows a parabolic shape and so the curvature decreases over time since the path gets closer and closer to a straight line.
3. Find the tangent, normal, and binormal vectors for the curve $\mathbf{r}(t)=\left\langle t^{2}, \frac{2}{3} t^{3}, t\right\rangle$ at the point $(1,2 / 3,1)$.

$$
\langle 2 / 3,2 / 3,1 / 3\rangle,\langle-1 / 3,2 / 3,-2 / 3\rangle,\langle-2 / 3,1 / 3,2 / 3\rangle
$$

Miscellany

A particle moves around the surface of a sphere. Show that its velocity vector and the vector from the center of the sphere to the particle's position are orthogonal at all times.
If $x(t)^{2}+y(t)^{2}+z(t)^{2}=1$, then taking the derivative with respect to time gives $0=2 x x^{\prime}+2 y y^{\prime}+2 z z^{\prime}=$ $2\langle x, y, z\rangle \cdot\left\langle x^{\prime}, y^{\prime}, z^{\prime}\right\rangle$.

