12.5-6: Planes, Cylinders, Quadratic Surfaces
 Wednesday, February 10

Warmup

Sketch the graphs of the surfaces described by the following equations:

1. $6 x-3 y+4 z=6$
2. $x^{2}+y^{2}=1\left(\right.$ in $\left.\mathbb{R}^{3}\right)$
3. $x^{2}+y^{2}+z^{2}=1$
4. $z=x^{2}+2 y^{2}$
5. $z=x^{2}-2 y^{2}$
6. $z^{2}=2 x^{2}+y^{2}$

Planes

Which of the following four planes are parallel? Are any of them identical?

$$
P_{1}: 3 x+6 y-3 z=6, \quad P_{2}: 4 x-12 y+8 z=5, \quad P_{3}: 9 y=1+3 x+6 z, \quad P_{4}: z=x+2 y-2
$$

Find an equation for the plane that passes through the points $(2,1,2),(3,-8,6)$, and $(-2,-3,1)$.

Find an equation for the plane that passes through the point $(3,1,4)$ and contains the line of intersection of the planes $x+2 y+3 z=1$ and $2 x-y+z=-3$.

Conic sections

Consider the cone described by $z^{2}=x^{2}+y^{2}$. Sketch its intersection with the following planes. Use substitution to eliminate one of the three variables, and describe the intersection.

1. $z=5$
2. $x=2$
3. $z=y+1$
4. $z=(x / 2)+1$

Find an equation for the surface consisting of all points equidistant from the points $(-1,0,0)$ and the plane $x=1$. Identify the surface.

