12.5-6: Planes, Cylinders, Quadratic Surfaces

Wednesday, February 10

Warmup

Sketch the graphs of the surfaces described by the following equations:

1. $6 x-3 y+4 z=6$: Plane
2. $x^{2}+y^{2}=1\left(\right.$ in $\left.\mathbb{R}^{3}\right)$: Cylinder
3. $x^{2}+y^{2}+z^{2}=1$: Sphere
4. $z=x^{2}+2 y^{2}$: Elliptic paraboloid
5. $z=x^{2}-2 y^{2}$: hyperbolic paraboloid
6. $z^{2}=2 x^{2}+y^{2}$: Cone [EDIT: previous posted answer was a typo]

Planes

Which of the following four planes are parallel? Are any of them identical?

$$
P_{1}: 3 x+6 y-3 z=6, \quad P_{2}: 4 x-12 y+8 z=5, \quad P_{3}: 9 y=1+3 x+6 z, \quad P_{4}: z=x+2 y-2
$$

The normal vectors to the four planes are $\langle 3,6,-3\rangle, 4,-12,8\rangle,\langle 3,-9,6\rangle,\langle 1,2,-1\rangle$. The first and fourth are parallel (in fact, identical) and the middle two are parallel (but not identical).

Find an equation for the plane that passes through the points $(2,1,2),(3,-8,6)$, and $(-2,-3,1)$.
Get the vectors between the first and second points $(\langle 1,-9,4\rangle)$ and between the second and third points $(\langle 5,-5,5\rangle)$, and take their cross product to find a normal line $(\langle-25,15,40\rangle$, which can be scaled down to $\langle-5,3,8\rangle)$. The plane is of the form $\langle-5,3,8\rangle \cdot x=k$, for some k.
Plugging in the point $(2,1,2)$ gives $k=9$.

Find an equation for the plane that passes through the point $(3,1,4)$ and contains the line of intersection of the planes $x+2 y+3 z=1$ and $2 x-y+z=-3$.
The line of intersection of the two planes is parallel to $\langle 1,2,3\rangle \times\langle 2,-1,1\rangle$, which is $\langle 5,5,-5\rangle$, which is parallel to $\langle 1,1,-1\rangle$.
Next we have to find a specific point on this line. Look for one at $z=0$, and get the two equations $x+2 y=1,2 x-y=-3$, which has the solution $(-1,1,0)$.
The vector from $(-1,1,0)$ to $(3,1,4)$ is $\langle 4,0,4\rangle$, and the plane is parallel to this vector and to $\langle 1,1,-1\rangle$. So the plane is normal to the cross product, which is $\langle-4,8,4\rangle$ (or parallel to $\langle-1,2,1\rangle$).
Finally, $\langle-1,2,1\rangle \cdot\langle 3,1,4\rangle=3$, so the plane is of the form $\langle-1,2,1\rangle \cdot x=3$.

Conic sections

Consider the cone described by $z^{2}=x^{2}+y^{2}$. Sketch its intersection with the following planes. Use substitution to eliminate one of the three variables, and describe the intersection.

1. $z=5$: circle
2. $x=2$: hyperbola
3. $z=y+1$: parabola
4. $z=(x / 2)+1$: ellipse

Find an equation for the surface consisting of all points equidistant from the points $(-1,0,0)$ and the plane $x=1$. Identify the surface.
$(x-1)^{2}=(x+1)^{2}+y^{2}+z^{2}$, or $-4 x=x^{2}+z^{2}$. It's an elliptic paraboloid.

