12.3: Dot Product

Wednesday, February 3

How to Open a Door

One student (pushing upward with a force of 50 N) is trying to open a door and another (pushing with a force of 40 N at an angle of $-\pi / 4$) is trying to shut it. Which way will the door start to move?

Draw vectors a, b, c, d such that $a \cdot b>0, a \cdot c=0, a \cdot d<0$.

Projections

Let $a=\langle 1,2,2\rangle, b=\langle 3,-1,0\rangle$.

1. Find the angle between a and b.
2. Find the vector projection of b onto a.
3. Find a vector orthogonal to a.
4. Find a vector orthogonal to both a and b.
5. Are there any vectors orthogonal to a, b, and the vector from your last answer?

Work

A ball of mass m is dropped from height r. If gravity acts downward on the ball with a constant force of $m g$, how much work does gravity do from the time the ball is dropped until the time it hits the ground?

What if the ball is rolled down a plane with a 30° incline starting at height r ?

What if the ball is at the end of a pendulum - attached to a rod of length r ? How much work from the time the rod is parallel to the ground to the bottom of its swing?

Lines

Consider the line given by $a x+b y=c$.

1. Show that the points on the line are the solutions to an equation of the form $u \cdot\langle x, y\rangle=k$.
2. Show that the points on the line can be expressed in the form $\left\{\left(x_{0}, y_{0}\right)+t v: t \in \mathbb{R}\right\}$ for some $\left(x_{0}, y_{0}\right)$ and v.
3. What is the relation between u and v ?
