16.1-2: Vector Fields, Line Integrals

Wednesday, April 13

Vector Fields

Sketch the force fields generated by..

1. A planet

2. Two planets with the same mass

3. Two particles with charges Q and $-Q$
4. The function $\mathbf{F}(x, y)=\frac{y \mathbf{i}-x \mathbf{j}}{\sqrt{x^{2}+y^{2}}}$

Sketch the level curves and gradient vector field of $f(x, y)=x^{2}-y$ and $g(x, y)=\ln \left(1+x^{2}+y^{2}\right)$.

Line Integrals
Find the line integral $\int_{C} x y^{4} d s$ where C is the right half of the circle $x^{2}+y^{2}=16$. Parametrize the curve with $x=4 \cos t, y=4 \sin t$ as t goes from $-\pi / 2$ to $\pi / 2$. Then

$$
\begin{aligned}
\int_{C} x y^{4} d s & =\int_{t=-\pi / 2}^{\pi / 2} 4^{5} \cos t \sin ^{4} t \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
& =\int_{t=-\pi / 2}^{\pi / 2} 4^{5} \cos t \sin ^{4} t \cdot(4) d t \\
& =4^{6}\left[\frac{1}{5} \sin ^{5} t\right]_{-\pi / 2}^{\pi / 2} \\
& =2 \cdot 4^{6} .
\end{aligned}
$$

Find the line integral $\int_{C}(x+2 y) d x+x^{2} d y$, where C consists of line segments from $(0,0)$ to $(2,1)$ and from $(2,1)$ to $(3,0)$.
Write this as the sum of two separate integrals, one for each line segment. Parametrize the first as $x=$ $2 t, y=t$ and the second as $x=t, y=3-t$. Then the integral becomes

$$
\begin{aligned}
\int_{C}(x+2 y) d x+x^{2} d y & =\int_{t=0}^{1}(x+2 y) x^{\prime}(t) d t+x^{2} y^{\prime}(t) d t+\int_{t=2}^{3}(x+2 y) x^{\prime}(t) d t+x^{2} y^{\prime}(t) d t \\
& =\int_{t=0}^{1} 4 t \cdot 2 \cdot d t+4 t^{2} d t+\int_{t=2}^{3}(6-t) d t+t^{2}(-1) d t \\
& =\left[4 t^{2}+\frac{4}{3} t^{3}\right]_{0}^{1}+\left[6 t-t^{2} / 2-t^{3} / 3\right]_{2}^{3} \\
& =(4+4 / 3)+(18-9 / 2-9-12+2+8 / 3) \\
& =5 / 2
\end{aligned}
$$

