15.2-3: Double Integrals, Polar Coordinates

Wednesday, March 30

Rectangular

Find the volume of the solid with the domain $\left\{(x, y, z): x^{2}+y^{2} \leq 1, y \geq z, x \geq 0, z \geq 0\right\}$.
Integrate over the xy-plane with $f(x, y)=y$ (taking care of the bounds $z \geq 0$ and $y \geq z$). The relevant domain is a quarter circle with $x, y \geq 0$ and $x^{2}+y^{2} \leq 1$, so get the integral

$$
\begin{aligned}
\iint_{D} f(x, y) d A & =\int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} y d y d x \\
& =\int_{x=0}^{1} \frac{1}{2}\left(1-x^{2}\right) d x \\
& \left.=\frac{1}{2}\left(x-x^{3} / 3\right) \right\rvert\, 0^{1} \\
& =\frac{1}{3}
\end{aligned}
$$

Polar

Do the previous problem again, but this time with polar coordinates!

As mentioned before, the relevant domain is a quarter circle, so make the substitution $y=r \sin \theta$ and get

$$
\begin{aligned}
\iint_{D} f(r, \theta) d A & =\int_{\theta=0}^{\pi / 2} \int_{r=0}^{1} r^{2} \sin \theta d r d \theta \\
& =\frac{1}{3} \int_{\theta=0}^{\pi / 2} \sin \theta d \theta \\
& =\left.\frac{1}{3}(-\cos \theta)\right|_{0} ^{\pi / 2} \\
& =\frac{1}{3}
\end{aligned}
$$

Oh good, it's the same answer! Also, since this is a "rectangle" in polar coordinates you can swap the order of integration and it won't be any easier or harder.
Better yet: if you're integrating over a rectangle and you can decompose your function as $f(x, y)=g(x) h(y)$, then in general you will get the relation $\iint f(x, y) d A=\left(\int g(x) d x\right)\left(\int h(y) d y\right)$.

Why is the variable substitution $d A=r d r d \theta$ correct? Draw a picture.
You should get a section of a circle which for small $d r, d \theta$ can be approximated by a rectangle with side lengths $d r$ and $r d \theta$. A picture is in the book, section 15.3.

Draw some domains that are well-suited for the following coordinate systems:

- Cartesian but not polar: rectangles, triangles, parabolic or polynomial boundaries.
- polar but not Cartesian: triangular wedges of a circle, partial tubes.
- both: circles, semicircles are both okay.
- neither: most shapes, to be honest.

Find the volume of a sphere with radius a.
Go with polar coordinates here, remembering to count both top and bottom hemispheres (so $f(r \theta)=$ $\left.2 \sqrt{a^{2}-r^{2}}\right)$:

$$
\begin{aligned}
\int_{r=0}^{a} \int_{\theta=0}^{2 \pi} 2 \sqrt{a^{2}-r^{2}} r d r d \theta & =4 \pi \int_{r=0}^{a} r \sqrt{a^{2}-r^{2}} d r \\
& \left.=4 \pi \frac{-1}{3}\left(a^{2}-r^{2}\right)^{3 / 2} \right\rvert\, 0^{a} \\
& =\frac{4}{3} \pi a^{3}
\end{aligned}
$$

