Review 3: Practice Final

Friday, May 6

1. Find the point(s) on the unit disk $\left\{(x, y): x^{2}+y^{2}=1\right\}$ that maximize the function $f(x, y)=$ $x^{2}-2 x+2 y^{2}$.
2. Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane, and below the cone $z=\sqrt{x^{2}+y^{2}}$.
3. If $\mathbf{F}(x, y)=\left\langle 2 x e^{-y}, 2 y-x^{2} e^{-y}\right\rangle$, evaluate the integral $\int \mathbf{F} \cdot d \mathbf{r}$ where C is a series of line segments from $(1,0)$ to $(3,3)$ to $(-4,7)$ to $\left(\pi, 3 \sqrt{2^{\pi}}\right)$ to $(2,1)$.
4. If $\mathbf{F}(x, y)=\langle x, 2 y, 3 z\rangle$, evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the cube with vertices $(\pm 1, \pm 1, \pm 1)$ (oriented outward).
5. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y, z)=\left\langle y z, 2 x z, e^{x y}\right\rangle$ and C is the circle $x^{2}+y^{2}=16, z=5$, oriented counterclockwise as viewed from above.
