Review 3: Practice Final $_{\text{Friday, May 6}}$

1. Find the point(s) on the unit disk $\{(x,y) : x^2 + y^2 = 1\}$ that maximize the function $f(x,y) = x^2 - 2x + 2y^2$.

2. Find the volume of the solid that lies within the sphere $x^2 + y^2 + z^2 = 4$, above the xy-plane, and below the cone $z = \sqrt{x^2 + y^2}$.

3. If $\mathbf{F}(x,y) = \langle 2xe^{-y}, 2y - x^2e^{-y} \rangle$, evaluate the integral $\int \mathbf{F} \cdot d\mathbf{r}$ where *C* is a series of line segments from (1,0) to (3,3) to (-4,7) to $(\pi, 3\sqrt{2^{\pi}})$ to (2,1).

4. If $\mathbf{F}(x,y) = \langle x, 2y, 3z \rangle$, evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where S is the cube with vertices $(\pm 1, \pm 1, \pm 1)$ (oriented outward).

5. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = \langle yz, 2xz, e^{xy} \rangle$ and C is the circle $x^2 + y^2 = 16, z = 5$, oriented counterclockwise as viewed from above.