Review 3: Practice Final

Friday, May 6

1. Find the point(s) on the unit disk $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ that maximize the function $f(x, y)=$ $x^{2}-2 x+2 y^{2}$.
$\nabla f(x, y)=\langle 2 x-2,4 y\rangle$, which is zero only at $(1,0)$. Since $f_{x x} f_{y y}-f_{x y}^{2}>0$ and $f_{x x}>0$, this is a local minimum rather than a local maximum, so we have to use Lagrange multipliers instead.
Get the equations

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
x & =\lambda(x-1) \\
y & =2 \lambda y .
\end{aligned}
$$

The equation $y=2 \lambda y$ has solutions $\lambda=0, y=0$ (which gets us the point $(1,0)$ as before) or $\lambda=1 / 2$. This second option implies that $x=-1$ and so $y=0 . f(-1,0)=3$, which is larger than $f(1,0)$, so the point $(-1,0)$ is the unique maximum on the disk.
2. Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane, and below the cone $z=\sqrt{x^{2}+y^{2}}$.

$$
\begin{aligned}
\int_{\rho=0}^{2} \int_{\phi=\pi / 4}^{\pi / 2} \int_{\theta=0}^{2 \pi} \rho^{2} \sin \phi d \theta d \phi d \rho & =\left(\int_{\rho=0}^{2} \rho^{2} d \rho\right)\left(\int_{\phi=\pi / 4}^{\pi / 2} \sin \phi d \phi\right)\left(\int_{\theta=0}^{2 \pi} d \theta\right) \\
& =(8 / 3) \cdot(2 \pi) \cdot[\cos \pi / 4-\cos \pi / 2] \\
& =(8 / 3) \cdot(2 \pi) \cdot \sqrt{2} / 2 \\
& =8 \pi \sqrt{2} / 3 .
\end{aligned}
$$

3. If $\mathbf{F}(x, y)=\left\langle 2 x e^{-y}, 2 y-x^{2} e^{-y}\right\rangle$, evaluate the integral $\int \mathbf{F} \cdot d \mathbf{r}$ where C is a series of line segments from $(1,0)$ to $(3,3)$ to $(-4,7)$ to $\left(\pi, 3 \sqrt{2^{\pi}}\right)$ to $(2,1)$.

If $\mathbf{F}=\langle P, Q\rangle$, observe that $P_{y}=-2 x e^{-y}=Q_{x}$, so since \mathbf{F} is defined on all of \mathbb{R}^{2} we can conclude that it is conservative. Inspection (or integrating P with respect to x and Q with respect to y and equating the two) give that \mathbf{F} is the gradient of $f(x, y)=y^{2}+x^{2} e^{-y}$.
We may therefore invoke the Fundamental Theorem of Line Integrals, and conclude that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=$ $f(2,1)-f(1,0)=(1+4 / e)-(1)=4 / e$.
4. If $\mathbf{F}(x, y)=\langle x, 2 y, 3 z\rangle$, evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the cube with vertices $(\pm 1, \pm 1, \pm 1)$ (oriented outward).
[NOTE: The original posted solution was incorrect.]

Consider the faces of the cube where $x= \pm 1$. The normal vectors are $\langle 1,0,0\rangle$ when $x=1$ and $\langle-1,0,0\rangle$ where $x=-1$, so $\mathbf{F} \cdot d \mathbf{S}=x=1$ on the first and $\mathbf{F} \cdot d \mathbf{S}=-x=1$ on the second. Since these are constants, on each face we get $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} d S$, which is just the area of the face. Since the faces of the cube all have edge length 4 , the surface integrals over the faces $x=1$ and $x=-1$ are both equal to 4 .
Similarly, the surface integrals over the faces $y= \pm 1$ and $z= \pm 1$ are both 8 and 12 , respectively, so the whole surface integral is equal to 48 .
Alternately: use the divergence theorem [optional: you won't need to know this, but it may be useful!] $\nabla \cdot \mathbf{F}=6$ uniformly, so $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{V} 6 d V$, which is 6 times the volume of the cube, which is 48 .
5. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y, z)=\left\langle y z, 2 x z, e^{x y}\right\rangle$ and C is the circle $x^{2}+y^{2}=16, z=5$, oriented counterclockwise as viewed from above.

This calls for Stokes' Theorem. Based on the orientation given, the normal vector to the surface is $\langle 0,0,1\rangle$, so $(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=Q_{x}-P_{y}$, the same as for Green's Theorem. Therefore,

$$
\begin{aligned}
\int_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S} & =\int_{S} Q_{x}-P_{y} d S \\
& =\int_{S} 2 z-z d S \\
& =5 \int_{S} d S \\
& =5 \cdot 16 \pi \\
& =80 \pi
\end{aligned}
$$

