14.7-8: Recap

Monday, March 14

Optimization

Maximize the area of a rectangle with perimeter p : first by making a substitution to eliminate the constraint, then again by using Lagrange multipliers.

Find and classify all critical points of the function $f(x, y)=\sin x+\cos y$.

A manufacturer's production is modeled by the function $P(x, y)=100 x^{3 / 4} y^{1 / 4}$ where x is the amount of labor and y is the amount of capital. If labor costs $\$ 200$ per unit, capital costs $\$ 250$ per unit, and the manager has $\$ 50,000$ to spend, what is the maximum attainable production level? Bonus: what is the physical interpretation of the Lagrange multiplier?

True or False?

- If $f_{x}(a, b)$ and $f_{y}(a, b)$ both exist then f is differentiable at (a, b).
- If $f(x, y)=\ln y$ then $\nabla f(x, y)=1 / y$.
- If f has a local minimum at (a, b) and f is differentiable at (a, b) then $\nabla f(a, b)=0$.
- If $f(x, y)=\sin x+\sin y$ then $-\sqrt{2} \leq D_{u} f(x, y) \leq \sqrt{2}$ for all unit vectors u.
- If f is differentiable at (a, b) and $\nabla f(a, b)=0$ then f has a local maximum or minimum at (a, b).
- If $\nabla f(a, b)=0, f_{x x}(a, b)>0$ and $f_{y y}(a, b)>0$, then f has a local minimum at (a, b).
- If $f(x, y)$ has two local maxima then f must have a local minimum.
- If f has a single global minimum at (a, b), then the minimum of f on the unit circle occurs at the point on the circle closest to (a, b).

