14.1-2: Functions of Multiple Variables
 Monday, February 29

Warmup

Find the limit, if it exists:

1. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sqrt{x}}$
2. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
3. $\lim _{x \rightarrow 0} \frac{x}{\sqrt{x+1}-1}$
4. $\lim _{x \rightarrow 0} \frac{x}{\sin x}$
5. $\lim _{x \rightarrow 0} \frac{x}{1-\cos ^{2} x}$
6. $\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos ^{2} x}$
7. $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{2}}$
8. $\lim _{x \rightarrow 0} \frac{\sin x-x-x^{3} / 6}{x^{5}}$
9. $\lim _{x \rightarrow 0} \frac{x\left(e^{x}-1\right)^{2} \sin ^{3} x}{\left(1-\cos ^{2} x\right)^{3}}$

Level Curves

Sketch the graphs of the following functions as well as their contour plots. On what domains are the functions defined?

1. $g(x, y)=\sqrt{9-x^{2}-y^{2}}$
2. $k(x, y)=\min (x, y)$
3. $h(x, y)=-\ln x-\ln y$
4. $f(x, y)=e^{-\left(x^{2}+y^{2}\right) / 2}$

Multivariate Limits

Find the limit or show that it does not exist.

1. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{y-2 x^{2}}$
2. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$
3. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y^{3}}{x^{6}+y^{4}}$
4. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+\sin ^{4} y}{\sin ^{2} x+y^{4}}$

True or False?

If false, give a counterexample.

1. If $f(x, y) \rightarrow L$ as $(x, y) \rightarrow(a, b)$ along every straight line through (a, b) then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$.
2. If f is a function then $\lim _{(x, y) \rightarrow(2,5) f(x, y)}=f(2,5)$.
3. If $f(x, y)$ is continuous and we define $g_{0}(y)=f(0, y)$, then g is also continuous.
4. If $f(x, y)$ has no global maximum or minimum and $g(x)=f(0, x)$, then $g(x)$ also has no global maximum or minimum.
