14.1-2: Functions of Multiple Variables Monday, February 29

Warmup

Find the limit, if it exists:

1.
$$\lim_{x \to 0} \frac{e^x - 1}{\sqrt{x}}$$
2.
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
3.
$$\lim_{x \to 0} \frac{x}{\sqrt{x + 1} - 1}$$
4.
$$\lim_{x \to 0} \frac{x}{\sin x}$$
5.
$$\lim_{x \to 0} \frac{x}{1 - \cos^2 x}$$
6.
$$\lim_{x \to 0} \frac{x^2}{1 - \cos^2 x}$$
7.
$$\lim_{x \to 0} \frac{\sin x - x}{x^2}$$
8.
$$\lim_{x \to 0} \frac{\sin x - x - x^3/6}{x^5}$$
9.
$$\lim_{x \to 0} \frac{x(e^x - 1)^2 \sin^3 x}{(1 - \cos^2 x)^3}$$

Level Curves

Sketch the graphs of the following functions as well as their contour plots. On what domains are the functions defined?

1.
$$g(x,y) = \sqrt{9 - x^2 - y^2}$$

2. $k(x,y) = \min(x,y)$
3. $h(x,y) = -\ln x - \ln y$
4. $f(x,y) = e^{-(x^2 + y^2)/2}$

Multivariate Limits

Find the limit or show that it does not exist.

1.
$$\lim_{(x,y)\to(0,0)} \frac{x^2 y}{y - 2x^2}$$

2.
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$$

3.
$$\lim_{(x,y)\to(0,0)} \frac{x^3 y^3}{x^6 + y^4}$$

4.
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + \sin^4 y}{\sin^2 x + y^4}$$

True or False?

If false, give a counterexample.

- 1. If $f(x,y) \to L$ as $(x,y) \to (a,b)$ along every straight line through (a,b) then $\lim_{(x,y)\to(a,b)} f(x,y) = L$.
- 2. If f is a function then $\lim_{(x,y)\to(2,5)f(x,y)} = f(2,5)$.
- 3. If f(x,y) is continuous and we define $g_0(y) = f(0,y)$, then g is also continuous.
- 4. If f(x,y) has no global maximum or minimum and g(x) = f(0,x), then g(x) also has no global maximum or minimum.