14.1-2: Functions of Multiple Variables
 Monday, February 29

Warmup

Find the limit, if it exists:

1. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sqrt{x}}: 1$
2. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}: 2$
3. $\lim _{x \rightarrow 0} \frac{x}{\sqrt{x+1}-1}: 2$
4. $\lim _{x \rightarrow 0} \frac{x}{\sin x}: 1$
5. $\lim _{x \rightarrow 0} \frac{x}{1-\cos ^{2} x}: 0$
6. $\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos ^{2} x}: 2$
7. $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{2}}: 0$
8. $\lim _{x \rightarrow 0} \frac{\sin x-x-x^{3} / 6}{x^{5}}: 1 / 120$
9. $\lim _{x \rightarrow 0} \frac{x\left(e^{x}-1\right)^{2} \sin ^{3} x}{\left(1-\cos ^{2} x\right)^{3}}: 8$

Level Curves

Sketch the graphs of the following functions as well as their contour plots. On what domains are the functions defined?

1. $g(x, y)=\sqrt{9-x^{2}-y^{2}}$: The graph is the top half of the surface of a sphere of radius 3 . The domain is a circle of radius 3 and the level curves are also circles.
2. $k(x, y)=\min (x, y)$: The domain is \mathbb{R}^{2}, and the level curves make right angles at the line $y=x$.
3. $h(x, y)=-\ln x-\ln y$: The domain is $\{(x, y):$ $x, y>0\}$ and the curves are hyperbolas of the form $x y=k$. As x or y approaches zero the function spikes to ∞.
4. $f(x, y)=e^{-\left(x^{2}+y^{2}\right) / 2}$: A normal curve with rotational symmetry around the origin. The level curves are circles.

Multivariate Limits

Find the limit or show that it does not exist.

1. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{y-2 x^{2}}$: Limit does not exist (check y and x axes)
2. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$: limit does not exist (check $y=x$).
3. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y^{3}}{x^{6}+y^{4}}$: The limit is zero.
4. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+\sin ^{4} y}{\sin ^{2} x+y^{4}}$: The limit is 1 . Writing as f / g, subtract g / g and try to show that the limit of $(f-g) / g$ is zero.

True or False?

If false, give a counterexample.

1. If $f(x, y) \rightarrow L$ as $(x, y) \rightarrow(a, b)$ along every straight line through (a, b) then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$. False.
2. If f is a function then $\lim _{(x, y) \rightarrow(2,5) f(x, y)}=f(2,5)$: False: this is true if f is continuous.
3. If $f(x, y)$ is continuous and we define $g_{0}(y)=f(0, y)$, then g is also continuous: true.
4. If $f(x, y)$ has no global maximum or minimum and $g(x)=f(0, x)$, then $g(x)$ also has no global maximum or minimum: False: try $f(x, y)=x^{2}-y^{2}$.
