12.3-12.5: Recap
 Monday, February 5

Warmup

Let $\mathbf{u}=\langle 1,2,3\rangle, \mathbf{v}=\langle-5,1,1\rangle, \mathbf{w}=\langle-3,5,7\rangle$. Find:

1. $\mathbf{u} \cdot \mathbf{v}$
2. $\mathbf{u} \cdot \mathbf{u}$
3. $\mathbf{v} \times \mathbf{w}$
4. $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$
5. What does the previous answer tell you about \mathbf{u}, \mathbf{v}, and \mathbf{w} ?
6. Make a sketch of the plane $x+y+z=1$ in the region $x, y, z \geq 0$.
7. What is the relation between the sets described by $\mathbf{u} \cdot x=1$ and $\mathbf{u} \cdot x=2$?

True or False

1. For any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}, \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$.
2. For any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}, \mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$.
3. If $\mathbf{u} \cdot \mathbf{v}=0$ then $\mathbf{u}=0$ or $\mathbf{v}=0$.
4. If $\mathbf{u} \times \mathbf{v}=0$ then $\mathbf{u}=0$ or $\mathbf{v}=0$.
5. The intersection of two non-parallel planes is always a line.

Three Dimensions

Find a formula for the distance from a point P_{0} to a line of the form $u_{0}+t \mathbf{u}$. Make a picture first.

Find the set of points equidistant from two parallel lines of the form $u_{0}+t \mathbf{u}$ and $u_{1}+t \mathbf{u}$. Make a sketch first and guess what the answer should be before doing any computations.

Bonus: What if the lines intersect? What if they are skew lines?

Given two intersecting planes described by the equations $\mathbf{u} \cdot x=k_{1}$ and $\mathbf{v} \cdot x=k_{2}$, find a way to describe the intersection.

