12.3-12.5: Recap
 Monday, February 15

Warmup

Let $\mathbf{u}=\langle 1,2,3\rangle, \mathbf{v}=\langle-5,1,1\rangle, \mathbf{w}=\langle-3,5,7\rangle$. Find:

1. $\mathbf{u} \cdot \mathbf{v}=0$
2. $\mathbf{u} \cdot \mathbf{u}=1^{2}+2^{2}+3^{2}=14$
3. $\mathbf{v} \times \mathbf{w}=-3+10+21=28$
4. $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=0$
5. What does the previous answer tell you about \mathbf{u}, \mathbf{v}, and \mathbf{w} ? The three vectors and the zero vector are coplanar. This also means that \mathbf{w} can be written as a linear combiation of \mathbf{u} and \mathbf{v}.
6. Make a sketch of the plane $x+y+z=1$ in the region $x, y, z \geq 0$. It should look like a triangle with vertices at $\langle 1,0,0\rangle,\langle 0,1,0\rangle,\langle 0,0,1\rangle$.
7. What is the relation between the sets described by $\mathbf{u} \cdot x=1$ and $\mathbf{u} \cdot x=2$? They're parallel planes.

True or False

1. For any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}, \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$.

Visual intuition: up to sign, yes, because (with the zero vector) the triple product describes the volume of a parallelepiped.
2. For any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}, \mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$.

Nope. $i \times(i \times j)=i \times k=-j$, but $(i \times i) \times j=0 \times j=0$.
3. If $\mathbf{u} \cdot \mathbf{v}=0$ then $\mathbf{u}=0$ or $\mathbf{v}=0$.

Nope. They can be perpendicular.
4. If $\mathbf{u} \times \mathbf{v}=0$ then $\mathbf{u}=0$ or $\mathbf{v}=0$.

Nope. They can be parallel.
5. The intersection of two non-parallel planes is always a line.

Yup.

Three Dimensions

- Find a formula for the distance from a point P_{0} to a line of the form $u_{0}+t u$. Make a picture first.

It's the height of a triangle, so $\left|\left(P_{0}-u_{0}\right) \times u\right| /|u|$, using the properties of the cross product.

- Find the set of points equidistant from two parallel lines of the form $u_{0}+t \mathbf{u}$ and $u_{1}+t \mathbf{u}$. Make a sketch first and guess what the answer should be before doing any computations.
The simplest way is to make the right observation: it's a plane lying halfway between the lines, and the normal vector to the plane is a vector describing the shortest path between the two planes.
However, there is no guarantee that the distance from u_{0} to u_{1} is also the distance betwen the lines, so we have to make a projection of some sort. The projection vector from u_{0} to the line through u_{1} is $u^{\prime}:=u \frac{\left(u_{0}-u_{1}\right) \cdot u}{|u|^{2}}$, so define $u_{2}=u_{1}+u^{\prime}$.
This means that $u_{0}-u_{2}$ is the normal vector to the plane, so call it \mathbf{v}. The plane, being halfway between the two lines, is given by $\mathbf{v} \cdot x=\left(\mathbf{v} \cdot u_{0}+\mathbf{v} \cdot u_{1}\right) / 2$.
- Bonus: What if the lines intersect? What if they are skew lines?

Have fun!

- Given two intersecting planes described by the equations $\mathbf{u} \cdot x=k_{1}$ and $\mathbf{v} \cdot x=k_{2}$, find a way to describe the intersection.
The intersection is a line, and since it lies in both planes it is perpendicular to both normal vectors. It can therefore be written in the form $P+t(\mathbf{u} \times \mathbf{v})$. Then we need to find a suitable P : we have the equations $k_{1}=\mathbf{u} \cdot(P+t(\mathbf{u} \times \mathbf{v}))=\mathbf{u} \cdot P$ and similarly $\mathbf{v} \cdot P=k_{2}$. Trial and error should work from there.
Note that these equations mean that if $\mathbf{u}=\mathbf{v}$ but $k_{1} \neq k_{2}$ then the planes are parallel and there is no intersection.

