Let $u = (1, 1), v = (-3/2, 2)$. Find and plot:

1. $u + v$
2. $2u - v$
3. $u/|u|$
4. $1/3 u + 2/3 v$
5. $-v/|v|$
6. A unit vector perpendicular to v

Write at least 3 tips for plotting points in polar coordinates. Use your tips to plot the curve $r = \sin \theta + \cos^2 \theta$.

Set up the integral that would give you the length of this curve for $0 \leq \theta \leq 2\pi$. Draw a picture to help you remember the arc length formula for polar coordinates.
Let \(u = (1, 1), v = (-3, 1), w = (-1, 3) \). Find numbers \(\alpha, \beta \) such that \(w = \alpha u + \beta v \) and plot your result.

A 300lb football player running east tackles a 200lb football player running south. If the second player was running twice as fast as the first player and they fall in the same direction post-tackle, what vector describes that direction? (Physics fact: the total momentum of the players, equal to mass times velocity, is conserved.)

There are two objects: one of mass \(M \) at location \(A \) and one of mass \(m \) at location \(B \). Where is the center of mass of the system? (Imagine the center of mass as the fulcrum of a scale balancing the two objects.)

True or False?

1. The polar curves \(r = 1 - \sin 2\theta, r = \sin 2\theta - 1 \) have the same graph.
2. If \(x = f(t) \) and \(y = g(t) \) are twice differentiable, then \(\frac{d^2y}{dx^2} = \frac{d^2y/dt^2}{d^2x/dt^2} \).
3. The distance traveled by an object is equal to the integral of its velocity over time.
4. For any vectors \(u \) and \(v \) in \(\mathbb{R}^n \), \(u + v = v + u \).
5. For any vectors \(u \) and \(v \) in \(\mathbb{R}^n \), \(|u + v| = |u| + |v| \).
6. The set of points \(\{x, y, z| x^2 + y^2 = 1 \} \) is a circle.