\clubsuit Let $u=\langle 1,1\rangle, v=\langle -3/2,2\rangle.$ Find and plot:

1.
$$u + v: \langle -1, 2, 3 \rangle$$

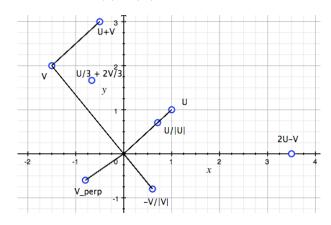
2.
$$2u - v: \langle 7/2, 0 \rangle$$

3.
$$u/|u|$$
: $\langle \sqrt{2}/2, \sqrt{2}/2 \rangle$

4.
$$\frac{1}{3}u + \frac{2}{3}v = \langle -2, 3, 5/3 \rangle$$
. Also 2/3 of the way along the line segment from u to v .

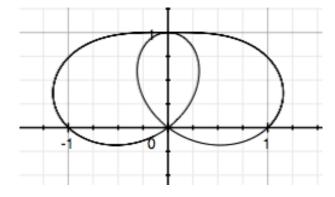
5.
$$-v/|v|$$
: $\langle 3/5, -4/5 \rangle$

6. A unit vector perpendicular to v: $\pm \langle 3/5, 4/5 \rangle$



Write at least 3 tips for plotting points in polar coordinates. Use your tips to plot the curve $r = \sin \theta + \cos^2 \theta$.

- Find $dr/d\theta$. When $dr/d\theta = 0$, the curve's distance from the origin is at a local maximum (or minimum). You can also find the intervals on which r is increasing or decreasing.
- Find any angles θ where r=0. If your function is differentiable, the lines at these angles will lie tangent to the curve at the origin.
- Maybe plot some simple points, like $\theta = 0$ or $\theta = \pi$.



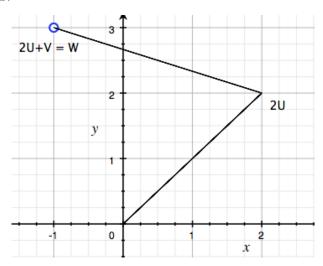
Set up the integral that would give you the length of this curve for $0 \le \theta \le 2\pi$. Draw a picture to help you remember the arc length formula for polar coordinates.

The picture is a triangle after a small bit of progress $\Delta\theta$. One side (the tangential axis) has progressed $r\Delta\theta$ and the other (the radial axis) has progressed Δr . The total length Δs is the hypotenuse, so

$$s = \int ds = \int \sqrt{(rd\theta)^2 + dr^2} = \int_{\theta=0}^{2\pi} \sqrt{r^2 + (dr/d\theta)^2} d\theta.$$

 \mathbb{C}

Let $u = \langle 1, 1 \rangle, v = \langle -3, 1 \rangle, w = \langle -1, 3 \rangle$. Find numbers α, β such that $w = \alpha u + \beta v$ and plot your result. The solution is 2u + v = w.



A 300lb football player running east tackles a 200lb football player running south. If the second player was running twice as fast as the first player and they fall in the same direction post-tackle, what vector describes that direction? (Physics fact: the total momentum of the players, equal to mass times velocity, is conserved.) Represent the momentum vector for player 1 as $\langle 300, 0 \rangle$ and the momentum vector for player 2 as $2 \cdot \langle 0, -200 \rangle$, so the combined momentum is $\langle 300, -400 \rangle = 100\langle 3, -4 \rangle$.

There are two objects: one of mass M at location A and one of mass m at location B. Where is the center of mass of the system? (Imagine the center of mass as the fulcrum of a scale balancing the two objects.) The center of mass is at $\frac{AM+Bm}{M+m}$, which is on the line segment between A and B since M/(M+m)+m/(M+m)=1.

♠ True or False?

- 1. The polar curves $r = 1 \sin 2\theta$, $r = \sin 2\theta 1$ have the same graph. True.
- 2. If x = f(t) and y = g(t) are twice differentiable, then $\frac{d^2y}{dx^2} = \frac{d^2y/dt^2}{d^2x/dx^2}$. False.
- 3. The distance traveled by an object is equal to the integral of its velocity over time. False...it's the integral of speed over time.

- 4. For any vectors u and v in \mathbb{R}^n , u + v = v + u. True.
- 5. For any vectors u and v in \mathbb{R}^n , |u+v|=|u|+|v|. False, unless the vectors are pointing in the same direction.
- 6. The set of points $\{x,y,z|x^2+y^2=1\}$ is a circle. False: it's an infinite cylinder.