10.2, 12.2: Recap
 Monday, February 1

$\%$
Let $u=\langle 1,1\rangle, v=\langle-3 / 2,2\rangle$. Find and plot:

1. $u+v:\langle-1,2,3\rangle$
2. $2 u-v:\langle 7 / 2,0\rangle$
3. $u /|u|:\langle\sqrt{2} / 2, \sqrt{2} / 2\rangle$
4. $\frac{1}{3} u+\frac{2}{3} v=\langle-2,3,5 / 3\rangle$. Also $2 / 3$ of the way along the line segment from u to v.
5. $-v /|v|:\langle 3 / 5,-4 / 5\rangle$
6. A unit vector perpendicular to $v: \pm\langle 3 / 5,4 / 5\rangle$

\diamond
Write at least 3 tips for plotting points in polar coordinates. Use your tips to plot the curve $r=\sin \theta+\cos ^{2} \theta$.

- Find $d r / d \theta$. When $d r / d \theta=0$, the curve's distance from the origin is at a local maximum (or minimum). You can also find the intervals on which r is increasing or decreasing.
- Find any angles θ where $r=0$. If your function is differentiable, the lines at these angles will lie tangent to the curve at the origin.
- Maybe plot some simple points, like $\theta=0$ or $\theta=\pi$.

Set up the integral that would give you the length of this curve for $0 \leq \theta \leq 2 \pi$. Draw a picture to help you remember the arc length formula for polar coordinates.
The picture is a triangle after a small bit of progress $\Delta \theta$. One side (the tangential axis) has progessed $r \Delta \theta$ and the other (the radial axis) has progressed Δr. The total length Δs is the hypotenuse, so

$$
s=\int d s=\int \sqrt{(r d \theta)^{2}+d r^{2}}=\int_{\theta=0}^{2 \pi} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta
$$

\bigcirc
Let $u=\langle 1,1\rangle, v=\langle-3,1\rangle, w=\langle-1,3\rangle$. Find numbers α, β such that $w=\alpha u+\beta v$ and plot your result.
The solution is $2 u+v=w$.

A 300lb football player running east tackles a 200lb football player running south. If the second player was running twice as fast as the first player and they fall in the same direction post-tackle, what vector describes that direction? (Physics fact: the total momentum of the players, equal to mass times velocity, is conserved.) Represent the momentum vector for player 1 as $\langle 300,0\rangle$ and the momentum vector for player 2 as $2 \cdot\langle 0,-200\rangle$, so the combined momentum is $\langle 300,-400\rangle=100\langle 3,-4\rangle$.

There are two objects: one of mass M at location A and one of mass m at location B. Where is the center of mass of the system? (Imagine the center of mass as the fulcrum of a scale balancing the two objects.)
The center of mass is at $\frac{A M+B m}{M+m}$, which is on the line segment between A and B since $M /(M+m)+$ $m /(M+m)=1$.

@ True or False?

1. The polar curves $r=1-\sin 2 \theta, r=\sin 2 \theta-1$ have the same graph.

True.
2. If $x=f(t)$ and $y=g(t)$ are twice differentiable, then $\frac{d^{2} y}{d x^{2}}=\frac{d^{2} y / d t^{2}}{d^{2} x / d x^{2}}$.

False.
3. The distance traveled by an object is equal to the integral of its velocity over time.

False. . . it's the integral of speed over time.
4. For any vectors u and v in $\mathbb{R}^{n}, u+v=v+u$. True.
5. For any vectors u and v in $\mathbb{R}^{n},|u+v|=|u|+|v|$. False, unless the vectors are pointing in the same direction.
6. The set of points $\left\{x, y, z \mid x^{2}+y^{2}=1\right\}$ is a circle. False: it's an infinite cylinder.

