10.1,10.2,10.3,10.5: Recap
 Monday, January 25

\& Evaluate:

1. $\sin (5 \pi / 6)=$
2. $\cos (5 \pi / 4)=$
3. $\cos (2 \pi / 3)=$
4. $\sin (-12 \pi)=$
5. $\cos (-\pi / 6)=$
6. $\tan (\pi / 4)=$
7. $\frac{d}{d \theta} \sin \theta / \theta=$
8. $\frac{d}{d x} 2 \sin \left(x^{2}\right) \cos \left(x^{2}\right)=$
9. $\frac{d}{d t} e^{t}\left(\sin ^{2} t+\cos ^{2} t\right)=$

Find Cartesian and parametric equations that describe each of the following:

1. An ellipse centered at $(3,-1)$ with semiaxes of length 2 and 5
2. A parabola opening upward that hits its minimum at $(2,0)$
3. A hyperbola opening horizontally.
\bigcirc Describe the path the particle takes, and sketch. Find all points (in time and space) where the line tangent to the curve has slope 1 .
4. $x=-3 \cos t, y=2 \sin t, \pi / 2 \leq t \leq 3 \pi / 2$
5. $x=\sin 2 t, y=1-\cos ^{2} 2 t, 0 \leq t \leq 2 \pi$
6. $x=t^{2}-1, y=t^{2}-1,-\infty<t<\infty$
\diamond Below are graphs of the polar equations $r=\sin \theta, r=\sin 2 \theta, r=\sin 3 \theta$, and $r=\sin 4 \theta$. Explain. What does the path of the particle look like?

What do you think the graphs of $r=\cos \theta, r=\cos 2 \theta, r=\cos 3 \theta, r=\cos 4 \theta$ look like?
© True or False? Explain your reasoning.

1. The curve defined by any set of parametric equations $(x, y)=(f(t), g(t))$ can also be defined by an equation of the form $y=h(x)$.
2. The curve defined by any equation of the form $y=h(x)$ can also be defined by a set of parametric equations $(x, y)=(f(t), g(t))$.
3. If $d y / d t=0$ at some point on a curve then the tangent line at that point is horizontal.
4. If a circle is parametrized as $(x, y)=(\cos t, \sin t)$, then for any t the angle between $(x(t), y(t))$ and the positive x -axis will be equal to t.
5. If $f(\theta)=f(-\theta)$ for all θ, then the curve defined by $r=f(\theta)$ will have a vertical axis of symmetry.
6. If $f(\theta)=f(\theta+\pi)$ for all θ, then the curve defined by $r=f(\theta)$ will be unchanged when it is rotated by 180 degrees about the origin.
