10.1,10.2,10.3,10.5: Recap
 Monday, January 25

\& Evaluate:

1. $\sin (5 \pi / 6)=1 / 2$
2. $\cos (-\pi / 6)=-\sqrt{3} / 2$
3. $\frac{d}{d x} 2 \sin \left(x^{2}\right) \cos \left(x^{2}\right)=$
$\frac{d}{d x} \sin \left(2 x^{2}\right)=2 x \cos \left(x^{2}\right)$
4. $\cos (5 \pi / 4)=-\sqrt{2} / 2$
5. $\tan (\pi / 4)=1$
6. $\cos (2 \pi / 3)=-1 / 2$
7. $\sin (-12 \pi)=0$
8. $\frac{d}{d \theta} \sin \theta / \theta=\cos \theta / \theta-$ $\sin \theta / \theta^{2}$
9. $\frac{d}{d t} e^{t}\left(\sin ^{2} t+\cos ^{2} t\right)=\frac{d}{d t} e^{t}=$

Find Cartesian and parametric equations that describe each of the following:

1. An ellipse centered at $(3,-1)$ with semiaxes of length 2 and $5:((x-3) / 2)^{2}+((y+1) / 5)^{2}=1$, or $x=3+2 \cos t, y=-1+5 \sin t$.
2. A parabola opening upward that hits its minimum at $(2,0) y=k(x-2)^{2}$, for any $k>0$, or $x=$ $t+2, y=t^{2}$.
3. A hyperbola opening horizontally. $x^{2}-y^{2}=1$, or $x=\cosh t, y=\sinh t$.
\checkmark Describe the path the particle takes, and sketch. Find all points (in time and space) where the line tangent to the curve has slope 1 .
4. $x=-3 \cos t, y=2 \sin t, \pi / 2 \leq t \leq 3 \pi / 2$

It's a fat ellipse centered at the origin, starting at $(0,2)$ and moving clockwise to $(0,-2)$.
2. $x=\sin 2 t, y=1-\cos ^{2} 2 t, 0 \leq t \leq 2 \pi$

Note that $y=\sin ^{2} 2 t=x^{2}$, so the point moves back and forth twice between $(-1,1)$ and $(1,1)$ along a parabola.
3. $x=t^{2}-1, y=t^{2}-1,-\infty<t<\infty$
$x=y$, so the particle stays on the path $y=x$. It moves down and left until $t=0$ where it stops at $(-1,-1)$, then reverses course.
\diamond Below are graphs of the polar equations $r=\sin \theta, r=\sin 2 \theta, r=\sin 3 \theta$, and $r=\sin 4 \theta$. Explain. What does the path of the particle look like?

In the odd cases, each loop is visited twice. This is true because for odd numbers $k, \sin (k(\theta+\pi))=-\sin (k \theta)$, so when the angle is pointing in the opposite direction r has the opposite sign.
For $\sin 2 t, \sin 3 t$ the loops are visited in clockwise order starting from the first quadrant. For sin $4 t$ the particle visits every third loop going in clockwise order, starting from the bottom loop in the first quadrant.

What do you think the graphs of $r=\cos \theta, r=\cos 2 \theta, r=\cos 3 \theta, r=\cos 4 \theta$ look like?
They are just rotated versions of the previous 4 graphs, since $\cos (\theta)=\sin (\pi / 2-\theta)$.
© True or False? Explain your reasoning.

1. The curve defined by any set of parametric equations $(x, y)=(f(t), g(t))$ can also be defined by an equation of the form $y=h(x)$.
False: $x=\cos \theta, y=\sin \theta$ defines a circle, and y cannot be expressed as a function of x.
2. The curve defined by any equation of the form $y=h(x)$ can also be defined by a set of parametric equations $(x, y)=(f(t), g(t))$.
True: set $x=t$ and $g(t)=h(x)$.
3. If $d y / d t=0$ at some point on a curve then the tangent line at that point is horizontal.

False: if $d x / d t$ is also zero then the tangent line is not necessarily horizontal.
4. If a circle is parametrized as $(x, y)=(\cos t, \sin t)$, then for any t the angle between $(x(t), y(t))$ and the positive x -axis will be equal to t.
True for circles, but not for ellipses.
5. If $f(\theta)=f(-\theta)$ for all θ, then the curve defined by $r=f(\theta)$ will have a vertical axis of symmetry. False: it will have a horizontal axis of symmetry.
6. If $f(\theta)=f(\theta+\pi)$ for all θ, then the curve defined by $r=f(\theta)$ will be unchanged when it is rotated by 180 degrees about the origin.

True.

